On the HP-LP-boundedness of some integral operators

被引:7
|
作者
Rocha, Pablo [1 ]
Urciuolo, Marta [1 ]
机构
[1] Univ Nacl Cordoba Conicet, FAMAF Ciem, RA-5000 Cordoba, Argentina
关键词
Integral operators; Hardy spaces;
D O I
10.1515/GMJ.2011.0043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain the H-P(R-n) -> L-P(R-n) boundedness, 0 < p <= 1, of integral operators of the form Tf(x) = integral vertical bar x - a(1)y vertical bar(-alpha 1) . . . vertical bar x - a(m)y vertical bar(-alpha m) f(y)dy, alpha(1) + . . . + alpha(m) = n and a(i) is an element of R \ {0}, a(j) not equal a(j) for i not equal j, l <= i, j <= m. We also show that these operators are not bounded on H-p (R).
引用
收藏
页码:801 / 808
页数:8
相关论文
共 50 条
  • [1] On the Hp-Lq boundedness of some fractional integral operators
    P. Rocha
    M. Urciuolo
    [J]. Czechoslovak Mathematical Journal, 2012, 62 : 625 - 635
  • [2] LP boundedness of Marcinkiewicz integral operators
    Cheng, Leslie C.
    Pan, Yibiao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) : 570 - 581
  • [3] On Hp boundedness of singular integral operators
    Kuang, Jichang
    [J]. Hunan Shifan Daxue Ziran Kexue Xuebao/Natural Sciences Journal of Hunan Normal University, 1992, 15 (02):
  • [4] Lp(.) Lq(.) boundedness of some integral operators obtained by extrapolation techniques
    Urciuolo, Marta
    Vallejos, Lucas
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 479 - 484
  • [5] Erratum to: “On the Hp-Lq boundedness of some fractional integral operators”
    Pablo Rocha
    Marta Urciuolo
    [J]. Czechoslovak Mathematical Journal, 2014, 64 : 867 - 868
  • [6] On Lp-boundedness of Fourier Integral Operators
    Yang, Jie
    Wang, Guangqing
    Chen, Wenyi
    [J]. POTENTIAL ANALYSIS, 2022, 57 (02) : 167 - 179
  • [7] On the boundedness of Fourier integral operators on Lp(Rn)
    Coriasco, Sandro
    Ruzhansky, Michael
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) : 847 - 851
  • [8] On Lp-boundedness of Fourier Integral Operators
    Jie Yang
    Guangqing Wang
    Wenyi Chen
    [J]. Potential Analysis, 2022, 57 : 167 - 179
  • [9] LP BOUNDEDNESS OF FOURIER INTEGRAL-OPERATORS
    BEALS, RM
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 38 (264) : R5 - 57
  • [10] On Lp boundedness of rough Fourier integral operators
    Wu, Guoning
    Yang, Jie
    [J]. FORUM MATHEMATICUM, 2024, 36 (06) : 1687 - 1699