Heat conduction in a two-dimensional harmonic crystal with disorder

被引:32
|
作者
Lee, LW [1 ]
Dhar, A
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
D O I
10.1103/PhysRevLett.95.094302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the problem of heat conduction in a mass-disordered two-dimensional harmonic crystal. Using two different stochastic heat baths, we perform simulations to determine the system size (L) dependence of the heat current (J). For white noise heat baths we find that J similar to 1/L-alpha with alpha approximate to 0.59, while correlated noise heat baths give alpha approximate to 0.51. A special case with correlated disorder is studied analytically and gives alpha=3/2, which agrees also with results from exact numerics.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Heat Conduction in Two-Dimensional Materials
    Mingtian Xu
    [J]. International Journal of Thermophysics, 2020, 41
  • [2] Heat Conduction in Two-Dimensional Materials
    Xu, Mingtian
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (08)
  • [3] Heat Conduction in Two-Dimensional Nonlinear Lattices
    Andrea Lippi
    Roberto Livi
    [J]. Journal of Statistical Physics, 2000, 100 : 1147 - 1172
  • [4] Heat conduction in two-dimensional nonlinear lattices
    Lippi, A
    Livi, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 1147 - 1172
  • [5] Heat conduction in a two-dimensional Ising model
    Casartelli, M.
    Macellari, N.
    Vezzani, A.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (02): : 149 - 156
  • [6] Heat conduction in a two-dimensional Ising model
    M. Casartelli
    N. Macellari
    A. Vezzani
    [J]. The European Physical Journal B, 2007, 56 : 149 - 156
  • [7] The two-dimensional retrospective heat conduction problem
    Yang, CY
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (08) : 978 - 987
  • [8] Heat conduction in two-dimensional disk models
    Xiong, Daxing
    Wang, Jiao
    Zhang, Yong
    Zhao, Hong
    [J]. PHYSICAL REVIEW E, 2010, 82 (03):
  • [9] On some two-dimensional problems in heat conduction.
    Lowan, AN
    [J]. PHILOSOPHICAL MAGAZINE, 1937, 24 (161): : 410 - 424
  • [10] A method of fundamental solutions for two-dimensional heat conduction
    Johansson, B. Tomas
    Lesnic, Daniel
    Reeve, Thomas
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (08) : 1697 - 1713