Heat Conduction in Two-Dimensional Nonlinear Lattices

被引:3
|
作者
Andrea Lippi
Roberto Livi
机构
[1] Dipartimento di Fisica dell'Università,Istituto Nazionale di Fisica della Materia
[2] Unità di Firenze,Istituto Nazionale di Fisica della Materia
[3] Unità di Firenze,Sezione di Firenze
[4] Istituto Nazionale di Fisica Nucleare,undefined
来源
关键词
heat conduction; Green–Kubo formula; strong stochasticity threshold;
D O I
暂无
中图分类号
学科分类号
摘要
The divergence of the heat conductivity in the thermodynamic limit is investigated in 2d-lattice models of anharmonic solids with nearest-neighbour interaction from single-well potentials. Two different numerical approaches based on nonequilibrium and equilibrium simulations provide consistent indications in favour of a logarithmic divergence in “ergodic”, i.e., highly chaotic, dynamical regimes. Analytical estimates obtained in the framework of linear-response theory confirm this finding, while tracing back the physical origin of this anomalous transport to the slow diffusion of the energy of hydrodynamic modes. Finally, numerical evidence of superanomalous transport is given in the weakly chaotic regime, typically observed below a threshold value of the energy density.
引用
收藏
页码:1147 / 1172
页数:25
相关论文
共 50 条
  • [1] Heat conduction in two-dimensional nonlinear lattices
    Lippi, A
    Livi, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 1147 - 1172
  • [2] Nonlinear tunneling in two-dimensional lattices
    Brazhnyi, V. A.
    Konotop, V. V.
    Kuzmiak, V.
    Shchesnovich, V. S.
    [J]. PHYSICAL REVIEW A, 2007, 76 (02):
  • [3] Two-dimensional solitons in nonlinear lattices
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Vysloukh, Victor A.
    Torner, Lluis
    [J]. OPTICS LETTERS, 2009, 34 (06) : 770 - 772
  • [4] TWO-DIMENSIONAL NONLINEAR HEAT-CONDUCTION PROBLEMS IN ANISOTROPIC BODIES
    FORMALEV, VF
    [J]. HIGH TEMPERATURE, 1988, 26 (06) : 868 - 874
  • [5] Heat Conduction in Two-Dimensional Materials
    Mingtian Xu
    [J]. International Journal of Thermophysics, 2020, 41
  • [6] Heat Conduction in Two-Dimensional Materials
    Xu, Mingtian
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (08)
  • [7] Anomalous heat conduction in three-dimensional nonlinear lattices
    Shiba, Hayato
    Ito, Nobuyasu
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (05)
  • [8] Solitary waves in two-dimensional nonlinear lattices
    Wei Wang
    Liping Liu
    [J]. Acta Mechanica, 2017, 228 : 3155 - 3171
  • [9] Selftrapping dynamics in two-dimensional nonlinear lattices
    Molina, MI
    [J]. MODERN PHYSICS LETTERS B, 1999, 13 (24): : 837 - 847
  • [10] Solitary waves in two-dimensional nonlinear lattices
    Wang, Wei
    Liu, Liping
    [J]. ACTA MECHANICA, 2017, 228 (09) : 3155 - 3171