STGIa spatio-temporal grid index model for marine big data

被引:12
|
作者
Qu, Tengteng [1 ]
Wang, Lizhe [2 ]
Yu, Jian [1 ]
Yan, Jining [2 ]
Xu, Guilin [3 ]
Li, Meng [1 ]
Cheng, Chengqi [1 ]
Hou, Kaihua [1 ]
Chen, Bo [1 ,4 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[3] Nanning Normal Univ, Key Lab Environm Evolut & Resource Utilizat Beibu, Nanning, Peoples R China
[4] Harbin Inst Technol, Inst Space Sci & Appl Technol, Shenzhen, Peoples R China
关键词
GeoSOT; spatio-temporal grid index model; marine big data; MongoDB; SPATIAL DATA;
D O I
10.1080/20964471.2020.1844933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Marine big data are characterized by a large amount and complex structures, which bring great challenges to data management and retrieval. Based on the GeoSOT Grid Code and the composite index structure of the MongoDB database, this paper proposes a spatio-temporal grid index model (STGI) for efficient optimized query of marine big data. A spatio-temporal secondary index is created on the spatial code and time code columns to build a composite index in the MongoDB database used for the storage of massive marine data. Multiple comparative experiments demonstrate that the retrieval efficiency adopting the STGI approach is increased by more than two to three times compared with other index models. Through theoretical analysis and experimental verification, the conclusion could be achieved that the STGI model is quite suitable for retrieving large-scale spatial data with low time frequency, such as marine big data.
引用
收藏
页码:435 / 450
页数:16
相关论文
共 50 条
  • [41] Spatio-temporal big data analysis of tourists: A Case Study of Hangzhou
    Xue, Jie
    Shi, Jinhao
    [J]. INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMOTE SENSING AND BIG DATA (ERSBD 2021), 2021, 12129
  • [42] Hair Data Model: A New Data Model for Spatio-Temporal Data Mining
    Madraky, Abbas
    Othman, Zulaiha Ali
    Hamdan, Abdul Razak
    [J]. 2012 4TH CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), 2012, : 18 - 22
  • [43] Decomposition tree: a spatio-temporal indexing method for movement big data
    Zhenwen He
    Chonglong Wu
    Gang Liu
    Zufang Zheng
    Yiping Tian
    [J]. Cluster Computing, 2015, 18 : 1481 - 1492
  • [44] From big data to knowledge: A spatio-temporal approach to malware detection
    Mao, Weixuan
    Cai, Zhongmin
    Yang, Yuan
    Shi, Xiaohong
    Guan, Xiaohong
    [J]. COMPUTERS & SECURITY, 2018, 74 : 167 - 183
  • [45] Decomposition tree: a spatio-temporal indexing method for movement big data
    He, Zhenwen
    Wu, Chonglong
    Liu, Gang
    Zheng, Zufang
    Tian, Yiping
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (04): : 1481 - 1492
  • [46] A Survey of Spatio-Temporal Big Data Indexing Methods in Distributed Environment
    Tian, Ruijie
    Zhai, Huawei
    Zhang, Weishi
    Wang, Fei
    Guan, Yao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4132 - 4155
  • [47] Privacy Preservation of Big Spatio-Temporal Co-occurrence Data
    Olawoyin, Anifat M.
    Leung, Carson K.
    Cuzzocrea, Alfredo
    [J]. 2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1331 - 1336
  • [48] A programming model for spatio-temporal data streaming applications
    Imai, Shigeru
    Varela, Carlos A.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1139 - 1148
  • [49] From Spatio-Temporal Data to Manufacturing System Model
    Charpentier, Patrick
    Vejar, Andres
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2014, 25 (05) : 557 - 565
  • [50] SQLST:: A spatio-temporal data model and query language
    Chen, CXM
    Zaniolo, C
    [J]. CONCEPTUAL MODELING ER 2000, PROCEEDINGS, 2000, 1920 : 96 - 111