STGIa spatio-temporal grid index model for marine big data

被引:12
|
作者
Qu, Tengteng [1 ]
Wang, Lizhe [2 ]
Yu, Jian [1 ]
Yan, Jining [2 ]
Xu, Guilin [3 ]
Li, Meng [1 ]
Cheng, Chengqi [1 ]
Hou, Kaihua [1 ]
Chen, Bo [1 ,4 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[3] Nanning Normal Univ, Key Lab Environm Evolut & Resource Utilizat Beibu, Nanning, Peoples R China
[4] Harbin Inst Technol, Inst Space Sci & Appl Technol, Shenzhen, Peoples R China
关键词
GeoSOT; spatio-temporal grid index model; marine big data; MongoDB; SPATIAL DATA;
D O I
10.1080/20964471.2020.1844933
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Marine big data are characterized by a large amount and complex structures, which bring great challenges to data management and retrieval. Based on the GeoSOT Grid Code and the composite index structure of the MongoDB database, this paper proposes a spatio-temporal grid index model (STGI) for efficient optimized query of marine big data. A spatio-temporal secondary index is created on the spatial code and time code columns to build a composite index in the MongoDB database used for the storage of massive marine data. Multiple comparative experiments demonstrate that the retrieval efficiency adopting the STGI approach is increased by more than two to three times compared with other index models. Through theoretical analysis and experimental verification, the conclusion could be achieved that the STGI model is quite suitable for retrieving large-scale spatial data with low time frequency, such as marine big data.
引用
收藏
页码:435 / 450
页数:16
相关论文
共 50 条
  • [1] MSTGI: a multi-scale spatio-temporal grid index model for remote-sensing big data retrieval
    Liu, Hong
    Yan, Jining
    Wang, Jinlin
    Zhang, Dongmei
    Li, Jiang
    He, Lihua
    Yu, Xingguo
    [J]. REMOTE SENSING LETTERS, 2024, 15 (01) : 44 - 54
  • [2] A spatio-temporal process data model for characterizing marine disasters
    Jiang, B.
    Zhang, X.
    Huang, X.
    Gao, T.
    [J]. 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [3] Expanding ParaSQL for spatio-temporal (big) data
    Sugam Sharma
    Shashi Gadia
    [J]. The Journal of Supercomputing, 2019, 75 : 587 - 606
  • [4] Expanding ParaSQL for spatio-temporal (big) data
    Sharma, Sugam
    Gadia, Shashi
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 587 - 606
  • [5] Cartography in the Age of Spatio-temporal Big Data
    [J]. 2017, SinoMaps Press (46):
  • [6] Review of Power Spatio-Temporal Big Data Technologies for Mobile Computing in Smart Grid
    Ma, Ying
    Huang, Chao
    Sun, Yu
    Zhao, Guang
    Lei, Yunjie
    [J]. IEEE ACCESS, 2019, 7 : 174612 - 174628
  • [7] A Service-Oriented Spatio-temporal Data Model of the Marine Environment
    Li, Zhao
    Feng, Yongxin
    [J]. APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 4543 - 4546
  • [8] VegaIndexer: A Distributed Composite Index Scheme for Big Spatio-Temporal Sensor Data on Cloud
    Zhong, Yunqin
    Fang, Jinyun
    Zhao, Xiaofang
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1713 - 1716
  • [9] Spaten: a Spatio-temporal and Textual Big Data Generator
    Doudali, Thaleia Dimitra
    Konstantinou, Ioannis
    Koziris, Nectarios
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3416 - 3421
  • [10] DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA
    Zinke, Christian
    Ngomo, Axel-Cyrille Ngonga
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 411 - 414