Deformations of covers, Brill-Noether theory, and wild ramification

被引:0
|
作者
Osserman, B [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94707 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a simple description of the deformations of a map between two smooth curves with partially prescribed branching, in the cases that both curves are fixed, and that the source is allowed to vary. Both descriptions work equally well in the tame or wild case. We then apply this result to obtain a positive-characteristic Brill-Noether-type result for ramified maps from general curves to the projective line, which even holds for wild ramification indices. Lastly, in the special case of rational functions on the projective line, we examine what we can say as a result about families of wildly ramified maps.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [31] On the Brill-Noether theory for K3 surfaces
    Leyenson, Maxim
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (04): : 1486 - 1540
  • [32] Brill-Noether Theory on ℙ2 for Bundles with Many Sections
    Coskun, Izzet
    Huizenga, Jack
    Raha, Neelarnab
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (06)
  • [33] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52
  • [34] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [35] BRILL-NOETHER ALGORITHM AND GOPPA CODES
    LEBRIGAND, D
    RISLER, JJ
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02): : 231 - 253
  • [36] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161
  • [37] On the Brill-Noether problem for vector bundles
    Daskalopoulos, GD
    Wentworth, RA
    FORUM MATHEMATICUM, 1999, 11 (01) : 63 - 77
  • [38] Ulrich sheaves and higher-rank Brill-Noether theory
    Kulkarni, Rajesh S.
    Mustopa, Yusuf
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2017, 474 : 166 - 179
  • [39] A generalized principal ideal theorem with an application to Brill-Noether theory
    Frauke Steffen
    Inventiones mathematicae, 1998, 132 : 73 - 89
  • [40] Severi varieties and Brill-Noether theory of curves on abelian surfaces
    Knutsen, Andreas Leopold
    Lelli-Chiesa, Margherita
    Mongardi, Giovanni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 : 161 - 200