Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells

被引:31
|
作者
Zhou, Guanqing [1 ,2 ]
Zhang, Ming [1 ,2 ]
Xu, Jinqiu [1 ,2 ]
Yang, Yankang [1 ,2 ]
Hao, Tianyu [1 ,2 ]
Zhu, Lei [1 ,2 ]
Zhou, Libo [1 ,2 ]
Zhu, Haiming [3 ]
Zou, Yecheng [4 ,5 ]
Wei, Gang [4 ,5 ]
Zhang, Yongming [1 ,2 ,4 ,5 ]
Liu, Feng [1 ,2 ,4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, In Situ Ctr Phys Sci, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
[4] State Key Lab Fluorinated Funct Membrane Mat, Zibo 256401, Shandong, Peoples R China
[5] Dongyue Future Hydrogen Energy Mat Co, Zibo 256401, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
CHARGE RECOMBINATION; ACCEPTOR; ENERGY;
D O I
10.1039/d2ee01327d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The current research reveals the unique photo physical properties and carrier generation mechanisms of high efficiency non-fullerene acceptor-based organic photovoltaic blends. The analysis of device performance, morphology, and photo physics reveals that the interface carrier generation cannot support the device's current output. It is seen that primary photon excitons can dissociate into charge carriers in Y6, which displays a time scale of similar to 0.3 ps with polaron yields above 28% in neat and blended thin films. This characteristic in combination with a large exciton diffusion length enables high morphology tolerance in Y6-overloaded blends. The carrier generation process is also combined with recombination studies. The recombination rate quantified by flux-dependent transient absorption measurements yields less than 5% total recombination and nearly 0% geminate recombination. These results define the advantages of the Y6 non-fullerene acceptor (NFA) and reveal the fundamental importance of developing new NFA materials with superior photo physical properties.
引用
收藏
页码:3483 / 3493
页数:11
相关论文
共 50 条
  • [41] High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder
    Sha Liu
    Jun Yuan
    Wanyuan Deng
    Mei Luo
    Yuan Xie
    Quanbin Liang
    Yingping Zou
    Zhicai He
    Hongbin Wu
    Yong Cao
    [J]. Nature Photonics, 2020, 14 : 300 - 305
  • [42] Soluble Dicyanodistyrylbenzene-Based Non-Fullerene Electron Acceptors with Optimized Aggregation Behavior for High-Efficiency Organic Solar Cells
    Kwon, Oh Kyu
    Park, Jung-Hwa
    Park, Sang Kyu
    Park, Soo Young
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (01)
  • [43] Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells
    Karuthedath, Safakath
    Gorenflot, Julien
    Firdaus, Yuliar
    Chaturvedi, Neha
    De Castro, Catherine S. P.
    Harrison, George T.
    Khan, Jafar I.
    Markina, Anastasia
    Balawi, Ahmed H.
    Pena, Top Archie Dela
    Liu, Wenlan
    Liang, Ru-Ze
    Sharma, Anirudh
    Paleti, Sri H. K.
    Zhang, Weimin
    Lin, Yuanbao
    Alarousu, Erkki
    Anjum, Dalaver H.
    Beaujuge, Pierre M.
    De Wolf, Stefaan
    McCulloch, Iain
    Anthopoulos, Thomas D.
    Baran, Derya
    Andrienko, Denis
    Laquai, Frederic
    [J]. NATURE MATERIALS, 2021, 20 (03) : 378 - +
  • [44] Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells
    Li, Yongxi
    Liu, Xiaodong
    Wu, Fu-Peng
    Zhou, Yi
    Jiang, Zuo-Quan
    Song, Bo
    Xia, Yuxin
    Zhang, Zhi-Guo
    Gao, Feng
    Inganas, Olle
    Li, Yongfang
    Liao, Liang-Sheng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) : 5890 - 5897
  • [45] The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non-fullerene acceptor organic solar cells
    Karki, Akchheta
    Vollbrecht, Joachim
    Gillett, Alexander J.
    Xiao, Steven Shuyong
    Yang, Yali
    Peng, Zhengxing
    Schopp, Nora
    Dixon, Alana L.
    Yoon, Sangcheol
    Schrock, Max
    Ade, Harald
    Reddy, G. N. Manjunatha
    Friend, Richard H.
    Nguyen, Thuc-Quyen
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3679 - 3692
  • [46] Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors
    Zhang, Xuning
    Zuo, Xiaobing
    Xie, Shenkun
    Yuan, Jianyu
    Zhou, Huiqiong
    Zhang, Yuan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (33) : 17230 - 17239
  • [47] Analysis of edge recombination for high-efficiency solar cells at low illumination densities
    Hermle, M
    Dicker, J
    Warta, W
    Glunz, SW
    Willeke, G
    [J]. PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 1009 - 1012
  • [48] High-Efficiency Non-Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry
    Zhang, Qi
    Zheng, Yu Jie
    Sun, Wenbo
    Ou, Zeping
    Odunmbaku, Omololu
    Li, Meng
    Chen, Shanshan
    Zhou, Yongli
    Li, Jing
    Qin, Bo
    Sun, Kuan
    [J]. ADVANCED SCIENCE, 2022, 9 (06)
  • [49] Understanding and Suppressing Non-Radiative Recombination Losses in Non-Fullerene Organic Solar Cells
    Liu, Quan
    Vandewal, Koen
    [J]. ADVANCED MATERIALS, 2023, 35 (35)
  • [50] High-efficiency non-fullerene polymer solar cell fabricated by a simple process using new conjugated terpolymers
    Hoang, Mai Ha
    Park, Gi Eun
    Choi, Suna
    Park, Chang Geun
    Park, Su Hong
    Tuyen Van Nguyen
    Kim, Sangjun
    Kwak, Kyungwon
    Cho, Min Ju
    Choi, Dong Hoon
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (01) : 111 - 118