Data-Driven Modelling and Prediction of the Process for Selecting Runway Configurations

被引:15
|
作者
Avery, Jacob [1 ]
Balakrishnan, Hamsa [1 ]
机构
[1] MIT, 77 Massachusetts Ave,33-328, Cambridge, MA 02139 USA
关键词
Air traffic control - Aviation - Decision making - Forecasting - Visibility - Wind;
D O I
10.3141/2600-01
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Runway configuration is a key driver of airport capacity at any time. Several factors, such as wind speed and direction, visibility, traffic demand, air traffic controller workload, and the coordination of flows with neighboring airports, influence the selection of the runway configuration. This paper infers the utility functions of the nominal decision-making process of air traffic personnel by using a discrete choice modeling approach. Given operational and weather conditions that have already been reported, such as ceiling and visibility, traffic demand, and current runway configuration, the model produces a probabilistic forecast of the runway configuration on a 15-min horizon. The prediction is then extended to a more realistic 3-h planning horizon. Case studies for San Francisco (SFO), California; LaGuardia (LGA), New York; and Newark (EWR), New Jersey, airports were completed by using this approach. Given the weather and airport arrival demand, the model predicts the correct runway configuration at SFO, LGA, and EWR on a 3-h horizon with accuracies of 81.2 %, 81.3%, and 77.8%, respectively.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [31] Data-driven Process Prioritization in Process Networks
    Kratsch, Wolfgang
    Manderscheid, Jonas
    Reissner, Daniel
    Roeglinger, Maximilian
    DECISION SUPPORT SYSTEMS, 2017, 100 : 27 - 40
  • [32] Data-driven optimal prediction with control
    Katrutsa, Aleksandr
    Oseledets, Ivan
    Utyuzhnikov, Sergey
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 143
  • [33] Prediction rigidities for data-driven chemistry
    Chong, Sanggyu
    Bigi, Filippo
    Grasselli, Federico
    Loche, Philip
    Kellner, Matthias
    Ceriotti, Michele
    FARADAY DISCUSSIONS, 2025, 256 (00) : 322 - 344
  • [34] Data-Driven Model for Rockburst Prediction
    Zhao, Hongbo
    Chen, Bingrui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [35] Data-driven nonparametric prediction intervals
    Frey, Jesse
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (06) : 1039 - 1048
  • [36] A Data-Driven Approach for Event Prediction
    Yuen, Jenny
    Torralba, Antonio
    COMPUTER VISION-ECCV 2010, PT II, 2010, 6312 : 707 - 720
  • [37] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,
  • [38] Data-driven prediction of air bending
    Vorkov, Vitalii
    Garcia, Alberto Tomas
    Rodrigues, Goncalo Costa
    Duflou, Joost R.
    18TH INTERNATIONAL CONFERENCE ON SHEET METAL, SHEMET 2019 - NEW TRENDS AND DEVELOPMENTS IN SHEET METAL PROCESSING, 2019, 29 : 177 - 184
  • [39] Measurement uncertainty, data quality and data-driven modelling
    Sommer, Klaus-Dieter
    Schuetze, Andreas
    TM-TECHNISCHES MESSEN, 2024, 91 (09) : 417 - 418
  • [40] Data-driven and knowledge-driven prediction methods for ventilated cavities based on Gaussian process
    Chen, Kuangqi
    Huang, Biao
    Hu, Chenxing
    Long, Hui
    Liu, Taotao
    Hao, Liang
    Zhang, Xuan
    PHYSICS OF FLUIDS, 2025, 37 (03)