Infinitely Many Solutions of Schrodinger-Poisson Equations with Critical and Sublinear Terms

被引:0
|
作者
Yao, Xianzhong [1 ,2 ]
Li, Xia [3 ]
Zhang, Fuchen [4 ]
Mu, Chunlai [2 ]
机构
[1] Shanxi Univ Finance & Econ, Fac Appl Math, Taiyuan 030006, Shanxi, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[3] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[4] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
关键词
SIGN-CHANGING SOLUTIONS; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; SYSTEM; EXISTENCE;
D O I
10.1155/2019/8453176
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the following Schrodinger-Poisson equations -Delta u+u+phi u=u5+lambda a R3,-Delta phi=u2,x is an element of Double-struck capital R3, where the parameter lambda>0 and p is an element of When the parameter lambda is small and the weight function fills some appropriate conditions, we admit the Schrodinger-Poisson equations possess infinitely many negative energy solutions by using a truncation technology and applying the usual Krasnoselskii genus theory. In addition, a byproduct is that the set of solutions is compact.
引用
收藏
页数:9
相关论文
共 50 条