Deterministic error bounds for kernel-based learning techniques under bounded noise

被引:19
|
作者
Maddalena, Emilio Tanowe [1 ]
Scharnhorst, Paul [1 ,2 ]
Jones, Colin N. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Automat Control Lab, Lausanne, Switzerland
[2] CSEM SA, Neuchatel, Switzerland
基金
瑞士国家科学基金会;
关键词
Deterministic error bounds; Generalization error; Kernel ridge regression; Support vector machines; SYSTEM-IDENTIFICATION; REGRESSION; RATES;
D O I
10.1016/j.automatica.2021.109896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of reconstructing a function from a finite set of noise-corrupted samples. Two kernel algorithms are analyzed, namely kernel ridge regression and epsilon-support vector regression. By assuming the ground-truth function belongs to the reproducing kernel Hilbert space of the chosen kernel, and the measurement noise affecting the dataset is bounded, we adopt an approximation theory viewpoint to establish deterministic, finite-sample error bounds for the two models. Finally, we discuss their connection with Gaussian processes and two numerical examples are provided. In establishing our inequalities, we hope to help bring the fields of non-parametric kernel learning and system identification for robust control closer to each other. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Error bounds for kernel-based numerical differentiation
    Oleg Davydov
    Robert Schaback
    [J]. Numerische Mathematik, 2016, 132 : 243 - 269
  • [2] Error bounds for kernel-based numerical differentiation
    Davydov, Oleg
    Schaback, Robert
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (02) : 243 - 269
  • [3] Bounded Kernel-Based Online Learning
    Orabona, Francesco
    Keshet, Joseph
    Caputo, Barbara
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 2643 - 2666
  • [4] Learning for Control: L1-Error Bounds for Kernel-Based Regression
    Bisiacco, Mauro
    Pillonetto, Gianluigi
    [J]. IEEE Transactions on Automatic Control, 2024, 69 (10) : 6530 - 6545
  • [5] Error Bounds and the Asymptotic Setting in Kernel-Based Approximation
    Karvonen, Toni
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 65 - 77
  • [6] Error bounds for kernel-based approximations of the Koopman operator
    Philipp, Friedrich M.
    Schaller, Manuel
    Worthmann, Karl
    Peitz, Sebastian
    Nueske, Feliks
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 71
  • [7] LEARNING THE KERNEL BASED ON ERROR BOUNDS
    Tang, Yi
    Chen, Hong
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 805 - 809
  • [8] A robust optimization approach to kernel-based nonparametric error-in-variables identification in the presence of bounded noise
    Cerone, V.
    Fadda, E.
    Regruto, D.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 831 - 838
  • [9] Error Bounds for Kernel-Based Linear System Identification With Unknown Hyperparameters
    Yin, Mingzhou
    Smith, Roy S. S.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2491 - 2496
  • [10] Error bounds for learning the kernel
    Micchelli, Charles A.
    Pontil, Massimiliano
    Wu, Qiang
    Zhou, Ding-Xuan
    [J]. ANALYSIS AND APPLICATIONS, 2016, 14 (06) : 849 - 868