Error Bounds for Kernel-Based Linear System Identification With Unknown Hyperparameters

被引:0
|
作者
Yin, Mingzhou [1 ]
Smith, Roy S. S. [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab, CH-8092 Zurich, Switzerland
来源
基金
瑞士国家科学基金会;
关键词
Identification; statistical learning; machine learning; uncertain systems;
D O I
10.1109/LCSYS.2023.3287305
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Applying regularization in reproducing kernel Hilbert spaces has been successful in linear system identification using stable kernel designs. From a Gaussian process perspective, it automatically provides probabilistic error bounds for the identified models from the posterior covariance, which are useful in robust and stochastic control. However, the error bounds require knowledge of the true hyperparameters in the kernel design. They can be inaccurate with estimated hyperparameters for lightly damped systems or in the presence of high noise. In this letter, we provide reliable quantification of the estimation error when the hyperparameters are unknown. The bounds are obtained by first constructing a high-probability set for the true hyperparameters from the marginal likelihood function. Then the worst-case posterior covariance is found within the set. The proposed bound is proven to contain the true model with a high probability and its validity is demonstrated in numerical simulation.
引用
收藏
页码:2491 / 2496
页数:6
相关论文
共 50 条
  • [1] Error bounds for kernel-based numerical differentiation
    Davydov, Oleg
    Schaback, Robert
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (02) : 243 - 269
  • [2] Error bounds for kernel-based numerical differentiation
    Oleg Davydov
    Robert Schaback
    [J]. Numerische Mathematik, 2016, 132 : 243 - 269
  • [3] A new kernel-based approach for linear system identification
    Pillonetto, Gianluigi
    De Nicolao, Giuseppe
    [J]. AUTOMATICA, 2010, 46 (01) : 81 - 93
  • [4] Error Bounds and the Asymptotic Setting in Kernel-Based Approximation
    Karvonen, Toni
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 65 - 77
  • [5] Error bounds for kernel-based approximations of the Koopman operator
    Philipp, Friedrich M.
    Schaller, Manuel
    Worthmann, Karl
    Peitz, Sebastian
    Nueske, Feliks
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 71
  • [6] Robust EM kernel-based methods for linear system identification
    Bottegal, Giulio
    Aravkin, Aleksandr Y.
    Hjalmarsson, Hakan
    Pillonetto, Gianluigi
    [J]. AUTOMATICA, 2016, 67 : 114 - 126
  • [7] Kernel-based linear system identification: When does the representer theorem hold?
    Pillonetto, Gianluigi
    Bisiacco, Mauro
    [J]. AUTOMATICA, 2024, 159
  • [8] A kernel-based approach to Hammerstein system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 1011 - 1016
  • [9] On Robustness of Kernel-Based Regularized System Identification
    Khosravi, Mohammad
    Smith, Roy S.
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 749 - 754
  • [10] A new kernel-based approach for system identification
    De Nicolao, Giuseppe
    Pillonetto, Gianluigi
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4510 - +