Synergistic effect of Cu/Cu2O surfaces and interfaces for boosting electrosynthesis of ethylene from CO2 in a Zn-CO2 battery

被引:4
|
作者
Jia, Zhichao [1 ]
Han, Dandan [1 ]
Chang, Fangfang [1 ]
Fu, Xiaogang [2 ]
Bai, Zhengyu [1 ]
Yang, Lin [1 ]
机构
[1] Henan Normal Univ, Collaborat Innovat Ctr Henan Prov Green Mfg Fine, Sch Chem & Chem Engn, Key Lab Green Chem Media & React,Minist Educ, Xinxiang 453007, Henan, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
基金
美国国家科学基金会;
关键词
SELECTIVE ELECTROCATALYTIC REDUCTION; HYDROGEN EVOLUTION REACTION; BOUNDARY-RICH COPPER; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; HIGHLY EFFICIENT; OXYGEN; CU; CATALYSTS;
D O I
10.1039/d2cy01131j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-carbon dioxide batteries have received considerable research interest because the technology not only can be used as clean energy storage devices, but also can achieve the conversion of carbon dioxide to produce useful fuels and chemicals. However, the development of high-performance electrocatalysts remains a major challenge. Here, we report the design and controllable construction of efficient Cu/Cu2O electrocatalysts with synergy of active surfaces and interfaces for the conversion of carbon dioxide to ethylene. The highly active Cu/Cu2O electrocatalysts are relatively stable under the condition of CO2 electroreduction, and the synergistic effect of the Cu/Cu2O surface and interface improves the selectivity and efficiency for C2H4 production. A high ethylene faradaic efficiency of 50% at -1.1 V vs. RHE on the Cu/Cu2O catalyst is achieved. Moreover, Zn-CO2 batteries equipped with the Cu/Cu2O catalyst exhibit an energy density of up to 1.17 mW cm(-2), and can maintain a cycle stability of 24 hours. Theoretical calculations show that the surface/interface of catalysts can enhance the adsorption of *CO, and further promotes the dimerization of *CO to ethylene. In situ ATR-FTIR spectroscopy studies have also further confirmed that *CO is an important intermediate during the formation of C2H4. This research will provide a new strategy for improving the stability of C-C coupling products and CO2 capture, conversion and electric power generation.
引用
收藏
页码:5671 / 5678
页数:8
相关论文
共 50 条
  • [31] Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O
    Ohya, Shinya
    Kaneco, Satoshi
    Katsumata, Hideyuki
    Suzuki, Tohru
    Ohta, Kiyohisa
    CATALYSIS TODAY, 2009, 148 (3-4) : 329 - 334
  • [32] Electrochemical reduction of CO2 on pure and doped Cu2O(111)
    Liu, Hongling
    Liu, Di
    Yu, Zhichao
    Bai, Haoyun
    Pan, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 170 - 177
  • [33] Electrochemical Reduction of CO2 using Supported Cu2O Nanoparticles
    Bugayong, J.
    Griffin, G. L.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02): : 81 - 89
  • [34] Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion
    Aguirre, Matias E.
    Zhou, Ruixin
    Eugene, Alexis J.
    Guzman, Marcelo I.
    Grela, Maria A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 : 485 - 493
  • [35] Enhanced CO2 Reduction to Ethylene with Hollow Cu2O Structure by Facet-Controlled Etching
    Li, Jing
    Meng, Chen
    Wang, Honglin
    Lin, Rui
    Wang, Min
    Zhu, Hongwei
    NANO, 2023, 18 (04)
  • [36] N-doped Cu2O with the tunable Cu0 and Cu+ sites for selective CO2 electrochemical reduction to ethylene
    Shen, Yao
    Qian, Liuqing
    Xu, Qianqian
    Wang, Shilun
    Chen, Yong
    Lu, Hengxia
    Zhou, Yu
    Ye, Jiexu
    Zhao, Jingkai
    Gao, Xiang
    Zhang, Shihan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 150 : 246 - 253
  • [37] Al-Doped Octahedral Cu2O Nanocrystal for Electrocatalytic CO2 Reduction to Produce Ethylene
    Li, Sanxiu
    Sha, Xuelan
    Gao, Xiafei
    Peng, Juan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (16)
  • [38] Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects
    de Brito, Juliana Ferreira
    Araujo, Angela Regina
    Rajeshwar, Krishnan
    Boldrin Zanoni, Maria Valnice
    CHEMICAL ENGINEERING JOURNAL, 2015, 264 : 302 - 309
  • [39] Transforming Cu into Cu2O/RuAl 2 O/RuAl intermetallic heterojunction for lowering the thermodynamic energy barrier of the CO2 2 reduction and evolution reactions in Li-CO2 2 battery
    Ma, Wenqing
    Hou, Jiagang
    Liu, Siyu
    Jian, Tianzhen
    Ma, Jianping
    Xu, Caixia
    Liu, Hong
    JOURNAL OF ENERGY CHEMISTRY, 2024, 98 : 531 - 540
  • [40] Electron transfer in Cu/Cu2O generated by disproportionation promoting efficient CO2 photoreduction
    Qian Zhu
    Kainan Zhu
    Minmin Cai
    Yaowen Zhang
    Zhiyu Shao
    Mengpei Jiang
    Xiyang Wang
    Zhibin Geng
    Xiaofeng Wu
    Manrong Li
    Keke Huang
    Shouhua Feng
    Nano Research, 2022, 15 (8) : 7099 - 7106