PERTURBED FRACTIONAL EIGENVALUE PROBLEMS

被引:9
|
作者
Farcaseanu, Maria [1 ,2 ]
Mihailescu, Mihai [1 ,2 ]
Stancu-Dumitru, Denisa [2 ,3 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
[3] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
关键词
Perturbed eigenvalue problem; non-local operator; variational methods; fractional Sobolev space;
D O I
10.3934/dcds.2017270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N (N >= 2) be a bounded domain with Lipschitz boundary. For each p is an element of (1, infinity) and s is an element of (0, 1) we denote by (-Delta(p))(s) the fractional (s, p)-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem (-Delta(p))(s) u = lambda vertical bar u vertical bar(p-2)u, in Omega, u = 0, in R-N \Omega, with a fractional (t, q)-Laplacian operator in the left-hand side of the equation, when t is an element of (0, 1) and q is an element of (1, infinity) are such that s N/p = t - N/q. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter lambda is strictly larger than the first eigenvalue of the (s, p) -Laplacian.
引用
收藏
页码:6243 / 6255
页数:13
相关论文
共 50 条