PERTURBED FRACTIONAL EIGENVALUE PROBLEMS

被引:9
|
作者
Farcaseanu, Maria [1 ,2 ]
Mihailescu, Mihai [1 ,2 ]
Stancu-Dumitru, Denisa [2 ,3 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
[3] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
关键词
Perturbed eigenvalue problem; non-local operator; variational methods; fractional Sobolev space;
D O I
10.3934/dcds.2017270
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N (N >= 2) be a bounded domain with Lipschitz boundary. For each p is an element of (1, infinity) and s is an element of (0, 1) we denote by (-Delta(p))(s) the fractional (s, p)-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem (-Delta(p))(s) u = lambda vertical bar u vertical bar(p-2)u, in Omega, u = 0, in R-N \Omega, with a fractional (t, q)-Laplacian operator in the left-hand side of the equation, when t is an element of (0, 1) and q is an element of (1, infinity) are such that s N/p = t - N/q. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter lambda is strictly larger than the first eigenvalue of the (s, p) -Laplacian.
引用
收藏
页码:6243 / 6255
页数:13
相关论文
共 50 条
  • [1] The Principal Eigenvalue Problems for Perturbed Fractional Laplace Operators
    Zhao, Guangyu
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (02): : 189 - 220
  • [2] SINGULARLY PERTURBED EIGENVALUE PROBLEMS
    STEINRUCK, H
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) : 1131 - 1149
  • [3] Perturbed eigenvalue problems: an overview
    Farcaseanu, Maria
    Grecu, Andrei
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (01): : 55 - 73
  • [4] Fractional eigenvalue problems that approximate Steklov eigenvalue problems
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    Salort, Ariel M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 499 - 516
  • [5] EIGENVALUE PROBLEMS FOR NONSMOOTHLY PERTURBED DOMAINS
    ARRIETA, JM
    HALE, JK
    HAN, Q
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (01) : 24 - 52
  • [6] Fractional eigenvalue problems on RN
    Grecu, Andrei
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (26) : 1 - 17
  • [7] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [8] A new approach to solve perturbed symmetric eigenvalue problems
    Dadah O.
    Rimouch H.A.
    Mousrij A.
    Koubaiti O.
    Mastorakis N.
    1600, North Atlantic University Union NAUN (14): : 629 - 636
  • [9] On the homotopy method for perturbed symmetric generalized eigenvalue problems
    Zhang, T
    Law, KH
    Golub, GH
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05): : 1625 - 1645
  • [10] SUMMING LOGARITHMIC EXPANSIONS FOR SINGULARLY PERTURBED EIGENVALUE PROBLEMS
    WARD, MJ
    HENSHAW, WD
    KELLER, JB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (03) : 799 - 828