Nonparametric estimation of multivariate scale mixtures of uniform densities

被引:5
|
作者
Pavlides, Marios G. [1 ]
Wellner, Jon A. [2 ]
机构
[1] Queens Univ Belfast, Ctr Stat Sci & Operat Res, Belfast BT7 1NN, Antrim, North Ireland
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Nonparametric estimation; Monotonicity; Multivariate; Minimax; Consistency; Uniform; Mixture; MAXIMUM-LIKELIHOOD-ESTIMATION; GRENANDER ESTIMATOR; BROWNIAN-MOTION;
D O I
10.1016/j.jmva.2012.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that U = (U-1 ,..., U-d) has a Uniform([0. 1](d)) distribution, that Y = (Y-1 ,..., Y-d) has the distribution Con R-+(d), and let X = (X-1 ,..., X-d) (U1Y1 ,..., UdYd). The resulting class of distributions of X (as G varies over all distributions on R-+(d)) is called the Scale Mixture of Uniforms class of distributions, and the corresponding class of densities on R-+(d) is denoted by,MU (d). We study maximum likelihood estimation in the family F-SMU(d). We prove existence of the MLE, establish Fenchel characterizations, and prove strong consistency of the almost surely unique maximum likelihood estimator (MLE) in F-SMU (d). We also provide an asymptotic minimax lower bound for estimating the functional f bar right arrow (x) under reasonable differentiability assumptions on f is an element of F-SMU (d) in a neighborhood of x. We conclude the paper with discussion, conjectures and open problems pertaining to global and local rates of convergence of the MLE. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 50 条