Data Grid tools: enabling science on big distributed data

被引:4
|
作者
Allcock, B [1 ]
Chervenak, A [1 ]
Foster, I [1 ]
Kesselman, C [1 ]
Livny, M [1 ]
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
关键词
D O I
10.1088/1742-6596/16/1/079
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A particularly demanding and important challenge that we face as we attempt to construct the distributed computing machinery required to support SciDAC goals is the efficient, high-performance, reliable, secure, and policy-aware management of large-scale data movement. This problem is fundamental to diverse application domains including experimental physics (high energy physics, nuclear physics, light sources), simulation science (climate, computational chemistry, fusion, astrophysics), and large-scale collaboration. In each case, highly distributed user communities require high-speed access to valuable data, whether for visualization or analysis. The quantities of data involved (terabytes to petabytes), the scale of the demand (hundreds or thousands of users, data-intensive analyses, real-time constraints), and the complexity of the infrastructure that must be managed (networks, tertiary storage systems, network caches, computers, visualization systems) make the problem extremely challenging. Data management tools developed under the auspices of the SciDAC Data Grid Middleware project have become the de facto standard for data management in projects worldwide. Day in and day out, these tools provide the "plumbing" that allows scientists to do more science on an unprecedented scale in production environments.
引用
收藏
页码:571 / 575
页数:5
相关论文
共 50 条
  • [21] Data science, big data and statistics
    Galeano, Pedro
    Pena, Daniel
    TEST, 2019, 28 (02) : 289 - 329
  • [22] Big Data: Data Science in Nursing
    Delaney, Connie White
    Westra, Bonnie
    WESTERN JOURNAL OF NURSING RESEARCH, 2017, 39 (01) : 3 - 4
  • [23] Enabling distributed Processing and Management of biological Data using the Grid and Web Technologies
    Chatziioannou, Aristotelis
    Kanaris, Ioannis
    Doukas, Charalampos
    Thermou, Ypapanti
    Maglogiannis, Ilias
    HEALTHGRID APPLICATIONS AND CORE TECHNOLOGIES, 2010, 159 : 249 - 254
  • [24] Data Science vs Big Data @ UTM Big Data Centre
    Shamsuddin, Siti Mariyam
    Hasan, Shafaatunnur
    2015 International Conference on Science in Information Technology (ICSITech), 2015, : 1 - 4
  • [25] Big Data Science
    Morik, Katharina
    Bockermann, Christian
    Buschjaeger, Sebastian
    KUNSTLICHE INTELLIGENZ, 2018, 32 (01): : 27 - 36
  • [26] Big Data Science
    McCartney, Patricia R.
    MCN-THE AMERICAN JOURNAL OF MATERNAL-CHILD NURSING, 2015, 40 (02) : 130 - 130
  • [27] Enabling Data Science for the Majority
    Parameswaran, Aditya
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (12): : 2309 - 2322
  • [28] Enabling phenotypic big data with PheNorm
    Yu, Sheng
    Ma, Yumeng
    Gronsbell, Jessica
    Cai, Tianrun
    Ananthakrishnan, Ashwin N.
    Gainer, Vivian S.
    Churchill, Susanne E.
    Szolovits, Peter
    Murphy, Shawn N.
    Kohane, Isaac S.
    Liao, Katherine P.
    Cai, Tianxi
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (01) : 54 - 60
  • [29] Earth science test suites to evaluate grid tools and middleware-examples for grid data access tools
    de Cerff, W. J. Som
    Petitdidier, M.
    Gemuend, A.
    Horstink, L.
    Schwichtenberg, H.
    EARTH SCIENCE INFORMATICS, 2009, 2 (1-2) : 117 - 131
  • [30] Medical Big Data Analysis Using Big Data Tools and Methods
    Alhussain, Thamer
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (04) : 793 - 795