Improved parameter estimation for systems with an experimentally located Hopf bifurcation

被引:2
|
作者
Cedersund, G [1 ]
Knudsen, C
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
[2] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
IEE PROCEEDINGS SYSTEMS BIOLOGY | 2005年 / 152卷 / 03期
关键词
D O I
10.1049/ip-syb:20050013
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
When performing system identification, we have two sources of information: experimental data and prior knowledge. Many cell-biological systems are oscillating, and sometimes we know an input where the system reaches a Hopf bifurcation. This is the case, for example, for glycolysis in yeast cells and for the Belousov-Zhabotinsky reaction, and for both of these systems there exist significant numbers of quenching data, ideal for system identification. We present a method that includes prior knowledge of the location of a Hopf bifurcation in estimation based on time-series. The main contribution is a reformulation of the prior knowledge into the standard formulation of a constrained optimisation problem. This formulation allows for any of the standard methods to be applied, including all the theories regarding the method's properties. The reformulation is carried out through an over-parametrisation of the original problem. The over-parametrisation allows for extra constraints to be formed, and the net effect is a reduction of the search space. A method that can solve the new formulation of the problem is presented, and the advantage of adding the prior knowledge is demonstrated on the Brusselator.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 50 条
  • [1] Estimation of the Hopf bifurcation point for aeroelastic systems
    Sedaghat, A
    Cooper, JE
    Leung, AYT
    Wright, JR
    JOURNAL OF SOUND AND VIBRATION, 2001, 248 (01) : 31 - 42
  • [2] Parameter inference for biochemical systems that undergo a Hopf bifurcation
    Kirk, Paul D. W.
    Toni, Tina
    Stumpf, Michael P. H.
    BIOPHYSICAL JOURNAL, 2008, 95 (02) : 540 - 549
  • [3] New methodology for parameter estimation of offshore slug models with Hopf bifurcation
    Rodrigues, Ricardo F.
    Trierweiler, JorgeO.
    Farenzena, Marcelo
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 117 : 247 - 255
  • [4] Eigenvalue and parameter approximation at Hopf bifurcation
    Spence, A
    COLLECTED LECTURES ON THE PRESERVATION OF STABILITY UNDER DISCRETIZATION, 2002, : 169 - 184
  • [5] HOPF-BIFURCATION WITH FLUCTUATING CONTROL PARAMETER
    GRAHAM, R
    PHYSICAL REVIEW A, 1982, 25 (06): : 3234 - 3258
  • [6] Functionalization of a parameter and cycle asymptotics in the Hopf bifurcation
    Krasnosel'skij, M.A.
    Kuznetsov, N.A.
    Yumagulov, M.G.
    Avtomatika i Telemekhanika, 1996, (11): : 22 - 28
  • [7] A fuzzy approach to handle parameter uncertainties in Hopf bifurcation analysis of electric power systems
    Satpathy, PK
    Das, D
    Gupta, PBD
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2004, 26 (07) : 527 - 534
  • [8] A parameter space method for analyzing Hopf bifurcation of fractional-order nonlinear systems with multiple-parameter
    Yang, Jing
    Hou, Xiaorong
    Li, Xiaoxue
    Luo, Min
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [9] On Hopf bifurcation in fractional dynamical systems
    Deshpande, Amey S.
    Daftardar-Gejji, Varsha
    Sukale, Yogita V.
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 189 - 198
  • [10] THE METHOD OF PARAMETER FUNCTIONALIZATION IN THE HOPF-BIFURCATION PROBLEM
    KOZJAKIN, VS
    KRASNOSELSKII, MA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (02) : 149 - 161