Pr2NiO4-Pr0.2Ce0.8O1.9 composite cathode as a potential cathode material for intermediate temperature solid oxide fuel cells

被引:31
|
作者
Chen, Xu [1 ]
Wang, Jianqiu [1 ]
Liang, Qingwen [1 ]
Sun, Xi [1 ]
Zhu, Xiaofei [1 ]
Zhou, Defeng [1 ]
Meng, Jian [2 ]
机构
[1] Changchun Univ Technol, Sch Chem & Life Sci, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resources Utilizat, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
IT-SOFCs; Pr2NiO4; Composite cathode; Oxygen reduction reaction; HIGH-PERFORMANCE; SOFC CATHODES; IT-SOFC; ELECTROCHEMICAL PERFORMANCE; DOPED CERIA; PR; DESIGN; ELECTROLYTES; PEROVSKITE; LA0.6SR0.4CO0.2FE0.8O3-DELTA;
D O I
10.1016/j.solidstatesciences.2019.106108
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A novel Pr2NiO4 (PNO)-Pr0.2Ce0.8O1.9 (PCO) composite material was synthesized by typical solid state mixing and modified sol-gel method, and was assessed as a cathode material candidate for intermediate temperature solid oxide fuel cells (IT-SOFCs). The effects of different preparation methods on the microstructure, transport properties, and stability of electrode materials were systematically investigated. It was found that the introduction of PCO enhanced the electrochemical activity of PNO electrode. Among the composite materials, PNO-PCO composite cathode obtained by sol-gel method exhibited the best electrochemical performance. The polarization resistance (R-p) on GDC electrolyte was 0.09 Omega cm(2) at 800 degrees C. The NiO-GDC/GDC/PNO-PCO single cell yielded maximum output power of 0.57 W cm(-2) at 800 degrees C. Furthermore, the R-p exhibited an excellent stability after polarization for 120 h, indicating the good chemical compatibility of PNO-PCO composite cathode with other cell components. The desirable electrochemical properties and stability of PNO-PCO composite demonstrate its potential as a cathode material for IT-SOFCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Preparation and characterization of Pr1-xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells
    Piao, Jinhua
    Sun, Kening
    Zhang, Naiqing
    Chen, Xinbing
    Xu, Shen
    Zhou, Derui
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 633 - 640
  • [42] La1.5Nd0.3Pr0.2NiO4.16: A New Cathode Material for IT-Solid Oxide Fuel Cells
    Amira, S.
    Ferkhi, M.
    Mauvy, F.
    Fourcade, S.
    Bassat, J. M.
    Grenier, J. C.
    ELECTROCATALYSIS, 2023, 14 (04) : 546 - 560
  • [43] Electrospinning La0.8Sr0.2Co0.2Fe0.8O3-δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode
    Zhao, Erqing
    Ma, Chao
    Yang, Wei
    Xiong, Yueping
    Li, Jianqi
    Sun, Chunwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (16) : 6821 - 6829
  • [44] Evaluation of La1.8Sr0.2NiO4+δ as cathode for intermediate temperature solid oxide fuel cells
    Wang, Ya-Ping
    Xu, Qing
    Huang, Duang-Ping
    Zhao, Kai
    Chen, Min
    Kim, Bok-Hee
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (15) : 6476 - 6485
  • [45] Pr2NiO4-Ag composite as cathode for low temperature solid oxide fuel cells: Effects of silver loading methods and amounts
    Fan, Liangdong
    Chen, Mingming
    Zhang, Hongjuan
    Wang, Chengyang
    He, Chuanxin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (27) : 17544 - 17551
  • [46] Investigation of Pr2NiMnO6‐Ce0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells
    Huan Li
    Li-Ping Sun
    Qingmao Feng
    Li-Hua Huo
    Hui Zhao
    Jean-Marc Bassat
    Aline Rougier
    Sébastien Fourcade
    Jean-Claude Grenier
    Journal of Solid State Electrochemistry, 2017, 21 : 273 - 280
  • [47] Mo doped Pr0.4Sr0.6Co0.2Fe0.8O3-δ cathode material with high catalytic activity for intermediate-temperature solid oxide fuel cells
    Zhang, Peng
    Guan, Guoqing
    Khaerudini, Deni S.
    Hao, Xiaogang
    Xue, Chunfeng
    Han, Minfang
    Kasai, Yutaka
    Abudula, Abuliti
    ELECTROCHIMICA ACTA, 2014, 146 : 591 - 597
  • [48] Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. high performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells
    Zhou, X. -D.
    Templeton, J. W.
    Nie, Z.
    Chen, H.
    Stevenson, J. W.
    Pederson, L. R.
    ELECTROCHIMICA ACTA, 2012, 71 : 44 - 49
  • [50] Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells
    Zhou, Qingjun
    Wang, Fang
    Shen, Yu
    He, Tianmin
    JOURNAL OF POWER SOURCES, 2010, 195 (08) : 2174 - 2181