The fast fourier transform for experimentalists part III: Classical spectral analysis

被引:9
|
作者
Rust, B [1 ]
Donnelly, D [1 ]
机构
[1] US Natl Inst Stand & Technol, Gaithersburg, MD USA
关键词
Approximation theory - Data acquisition - Fast Fourier transforms - Problem solving - Regression analysis - Time series analysis;
D O I
10.1109/MCSE.2005.103
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The concepts with a general approach to computing spectrum estimation problems, by the use of fast Fourier transform (FFT), are discussed. FFt is used in almost all the spectrum estimator programs in their calculations, but these programs can differ in their assumption about the missing data outside the observation window. These assumptions show profound effects on the spectral estimates. The Continuous Fourier transform (CFT) and the frequency spectrum on a danser frequency mesh can be approximated by appending zeros to the time series. Frequecncy spectrum estimation is a classical undetermined problem because it requires the estimation of spectrum at an infinite number of frequencies using only a finite amount of data. That is why, many researchers have concentrated on autoregressive spectral estimates, which give better resolution because they make better assumptions about the window of observation.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 50 条
  • [41] Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients
    Chemla, D
    Young, J
    Badilini, F
    Malson-Blanche, P
    Affres, H
    Lecarpentier, Y
    Chanson, P
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2005, 104 (03) : 307 - 313
  • [42] Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: a comparative study
    Fagard, RH
    Pardaens, K
    Staessen, JA
    Thijs, L
    ACTA CARDIOLOGICA, 1998, 53 (04) : 211 - 218
  • [43] The fast Fourier transform and fast wavelet transform for patterns on the torus
    Bergmann, Ronny
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) : 39 - 51
  • [44] High Resolution and Fast Processing of Spectral Reconstruction in Fourier Transform Imaging Spectroscopy
    Zhang, Weikang
    Wen, Desheng
    Song, Zongxi
    Wei, Xin
    Liu, Gang
    Li, Zhixin
    SENSORS, 2018, 18 (12)
  • [45] A HIGH-ORDER SPECTRAL ELEMENT FAST FOURIER TRANSFORM FOR THE POISSON EQUATION
    Caforio, F.
    Imperiale, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : A2747 - A2771
  • [46] Characterization using Spectral Signature of Tropical Plants through Fast Fourier Transform
    Ballado, Alejandro, Jr.
    Lazaro, Jose, Jr.
    Avendano, Glenn
    De Claro, Clarice An Rosette M.
    Kristofer Sandoval, Gabriel
    Viloria, Rez A.
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (IEEE HNICEM), 2017,
  • [47] Fast Incremental Spectral Clustering in Titanate Application via Graph Fourier Transform
    Shu-Juan, Gao
    IEEE ACCESS, 2020, 8 : 57252 - 57259
  • [48] Fast Fourier Transform based Diagnostics for Spectral Characterization of Millimeter Waves in Tokamaks
    Thoen, D. J.
    Bongers, W. A.
    Westerhof, E.
    Oosterbeek, J. W.
    de Baar, M. R.
    van den Berg, M. A.
    van Beveren, V.
    Buerger, A.
    Goede, A. P. H.
    Graswinckel, M. F.
    Hennen, M. F.
    Schuller, F. C.
    2009 34TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, VOLS 1 AND 2, 2009, : 592 - +
  • [49] The future fast Fourier transform?
    Edelman, A
    McCorquodale, P
    Toledo, S
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (03): : 1094 - 1114
  • [50] ON DERIVATION OF FAST FOURIER TRANSFORM
    BERTRAM, S
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (01): : 55 - &