Imaging of RNA in situ hybridization by atomic force microscopy

被引:8
|
作者
Kalle, WHJ [1 ]
Macville, MVE [1 ]
vandeCorput, MPC [1 ]
deGrooth, BG [1 ]
Tanke, HJ [1 ]
Raap, AK [1 ]
机构
[1] UNIV TWENTE,DEPT APPL PHYS,7500 AE ENSCHEDE,NETHERLANDS
来源
关键词
atomic force microscopy; cell morphology; DAB; ethanol dehydration; in situ hybridization; peroxidase; RNA;
D O I
10.1046/j.1365-2818.1996.64428.x
中图分类号
TH742 [显微镜];
学科分类号
摘要
In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus immediate early antigen mRNA. The haptenized hybrids were subsequently detected with a peroxidase-labelled antibody and visualized with 3,3'-diaminobenzidine (DAB). The influence of various scanning conditions on cell morphology and visibility of the signal was investigated, In order to determine the influence of ethanol dehydration on cellular structure and visibility of the DAB precipitate, cells were kept in phosphate-buffered saline (PBS) and scanned under fluid after DAB development or dehydrated and subsequently scanned dry or submerged in PBS. Direct information on the increase in height of cellular structures because of internally precipitated DAB and the height of mock-hybridized cells was available. Results show that internal DAB precipitate can be detected by AFM, with the highest sensitivity in the case of dry cells, Although a relatively large amount of DAB had to be precipitated inside the cell before it was visible by AFM, the resolution of AFM for imaging of RNA-in situ hybridization signals was slightly better than that of conventional optical microscopy. Furthermore, it is concluded that dehydration of the cells has irreversible effects on cellular structure. Therefore, scanning under fluid of previously dehydrated samples cannot be considered as a good representation of the situation before dehydration.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 50 条
  • [11] In Situ Imaging of Candida albicans Hyphal Growth via Atomic Force Microscopy
    Colak, Arzu
    Ikeh, Melanie A. C.
    Nobile, Clarissa J.
    Baykara, Mehmet Z.
    MSPHERE, 2020, 5 (06) : 1 - 10
  • [12] Single molecule imaging of RNA polymerase II using atomic force microscopy
    Rhodin, T
    Fu, JH
    Umemura, K
    Gad, M
    Jarvis, S
    Ishikawa, M
    APPLIED SURFACE SCIENCE, 2003, 210 (1-2) : 105 - 111
  • [13] Imaging of viruses by atomic force microscopy
    Kuznetsov, YG
    Malkin, AJ
    Lucas, RW
    Plomp, M
    McPherson, A
    JOURNAL OF GENERAL VIROLOGY, 2001, 82 : 2025 - 2034
  • [14] IMAGING OF POLYDIACETYLENES BY ATOMIC FORCE MICROSCOPY
    YAMADA, H
    OKADA, S
    FUJII, T
    KAGESHIMA, M
    KAWAZU, A
    MATSUDA, H
    NAKANISHI, H
    NAKAYAMA, K
    APPLIED SURFACE SCIENCE, 1993, 65-6 : 366 - 370
  • [15] Atomic force microscopy imaging of liposomes
    Jass, J
    Tjärnhage, T
    Puu, G
    LIPOSOMES, PT A, 2003, 367 : 199 - 213
  • [16] Imaging polysaccharides by atomic force microscopy
    Kirby, AR
    Gunning, AP
    Morris, VJ
    BIOPOLYMERS, 1996, 38 (03) : 355 - 366
  • [17] Imaging fibers by atomic force microscopy
    Carter, MMC
    McIntyre, NS
    Davidson, R
    King, HW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (03): : 1867 - 1869
  • [18] Fidelity imaging for atomic force microscopy
    Ghosal, Sayan
    Salapaka, Murti
    APPLIED PHYSICS LETTERS, 2015, 106 (01)
  • [19] Imaging by touching: Atomic force microscopy
    Ariel Schwartz, Gustavo
    Navarro, Jaume
    PHILOSOPHY OF PHOTOGRAPHY, 2018, 9 (01) : 41 - 52
  • [20] In situ atomic force microscopy of zeolite A dissolution
    Meza, L. Itzel
    Anderson, Michael W.
    Slater, Ben
    Agger, Jonathan R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (33) : 5066 - 5076