SPDEs with affine multiplicative fractional noise in space with index 1/4 < H < 1/2

被引:29
|
作者
Balan, Raluca M. [1 ]
Jolis, Maria [2 ]
Quer-Sardanyons, Lluis [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
基金
加拿大自然科学与工程研究理事会;
关键词
stochastic wave equation; stochastic heat equation; fractional Brownian motion; random field solution; STOCHASTIC WAVE-EQUATION; HEAT-EQUATION; DRIVEN; SMOOTHNESS; DENSITY; FORMULA;
D O I
10.1214/EJP.v20-3719
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the stochastic wave and heat equations on R with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index H, with 1/4 < H < 1/2. We assume that the diffusion coefficient is given by an affine function sigma(x) = ax + b, and the initial value functions are bounded and Holder continuous of order H. We prove the existence and uniqueness of the mild solution for both equations. We show that the solution is L-2 (Omega) -continuous and its p-th moments are uniformly bounded, for any p >= 2
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [21] The weakly coupled fractional one-dimensional Schrodinger operator with index 1 &lt; α ≤ 2
    Hatzinikitas, Agapitos N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [22] Characteristics of Mg2-xTixNi1-yCuy-H2 (0&lt;x&lt;2, 0&lt;y&lt;1) alloys
    Yuan, HT
    Yang, ED
    Yang, HB
    Liu, B
    Wang, LB
    Cao, R
    Zhang, YS
    JOURNAL OF ALLOYS AND COMPOUNDS, 1999, 291 (1-2) : 244 - 247
  • [23] HOW TO APPROXIMATE THE FRACTIONAL DERIVATIVE OF ORDER 1 &lt; α ≤ 2
    Sousa, Ercilia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [24] Approximate controllability for Hilfer fractional stochastic differential systems of order 1&lt;μ&lt;2
    Pradeesh, J.
    Vijayakumar, V.
    JOURNAL OF CONTROL AND DECISION, 2024,
  • [25] A study of nonlocal fractional neutral stochastic integrodifferential inclusions of order 1 &lt; α &lt; 2 with impulses
    Afreen, A.
    Raheem, A.
    Khatoon, A.
    JOURNAL OF CONTROL AND DECISION, 2024,
  • [26] Bounded Real Lemmas for Singular Fractional-Order Systems: The 1 &lt; α &lt; 2 Case
    Zhang, Qing-Hao
    Lu, Jun-Guo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (02) : 732 - 736
  • [27] An Analysis on the Optimal Control for Fractional Stochastic Delay Integrodifferential Systems of Order 1 &lt; γ &lt; 2
    Johnson, Murugesan
    Vijayakumar, Velusamy
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [28] New discussion on nonlocal controllability for fractional evolution system of order 1 &lt; r &lt; 2
    Raja, M. Mohan
    Vijayakumar, Velusamy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Rezapour, Shahram
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [29] THE CONTROLLER DESIGN FOR SINGULAR FRACTIONAL-ORDER SYSTEMS WITH FRACTIONAL ORDER 0 &lt; α &lt; 1
    Zhan, T.
    Ma, S. P.
    ANZIAM JOURNAL, 2018, 60 (02): : 230 - 248
  • [30] Bifurcations and transition to chaos in generalized fractional maps of the orders 0 &lt; a &lt; 1
    Edelman, Mark
    Helman, Avigayil B.
    Smidtaite, Rasa
    CHAOS, 2023, 33 (06)