Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [41] Semiparametric estimation with missing covariates
    Bravo, Francesco
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 329 - 346
  • [42] Semiparametric instrumental variables estimation
    Park, S
    JOURNAL OF ECONOMETRICS, 2003, 112 (02) : 381 - 399
  • [43] Gaussian profile estimation in one dimension (vol 46, 5374, 2007)
    Hagen, Nathan
    Kupinski, Matthew
    Dereniak, Eustace L.
    APPLIED OPTICS, 2022, 61 (16) : 4710 - 4710
  • [44] Estimation in semiparametric spatial regression
    Gao, Jiti
    Lu, Zudi
    Tjostheim, Dag
    ANNALS OF STATISTICS, 2006, 34 (03): : 1395 - 1435
  • [45] Parameter Estimation in Semiparametric Model
    Jin, Lihong
    Wang, Yao
    Luo, Jing
    2ND INTERNATIONAL CONFERENCE ON SENSORS, INSTRUMENT AND INFORMATION TECHNOLOGY (ICSIIT 2015), 2015, : 211 - 216
  • [46] Semiparametric estimation of outbreak regression
    Frisen, Marianne
    Andersson, Eva
    Pettersson, Kjell
    STATISTICS, 2010, 44 (02) : 107 - 117
  • [47] Maximum profile binomial likelihood estimation for the semiparametric Box-Cox power transformation model
    Li, Pengfei
    Yu, Tao
    Chen, Baojiang
    Qin, Jing
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 2317 - 2342
  • [48] Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models
    Lawless, Jerald F.
    Yilmaz, Yildiz E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (07) : 2446 - 2455
  • [49] A semiparametric profile monitoring via residuals
    Siddiqui, Zainab
    Abdel-Salam, Abdel-Salam G.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (04) : 959 - 977
  • [50] The estimation and profile of the critical value for a Schrödinger equation
    Jing Zeng
    Boundary Value Problems, 2014