Critical dimension in profile semiparametric estimation

被引:5
|
作者
Andresen, Andreas [1 ]
Spokoiny, Vladimir [1 ,2 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] HU Berlin, Moscow Inst Phys & Technol, D-10117 Berlin, Germany
来源
关键词
Profile maximum likelihood; local linear approximation; spread; local concentration; P-REGRESSION PARAMETERS; ASYMPTOTIC NORMALITY; POSTERIOR DISTRIBUTIONS; LIKELIHOOD RATIO; BEHAVIOR; RESIDUALS; MODEL; P2/N;
D O I
10.1214/14-EJS982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper revisits the classical inference results for profile quasi maximum likelihood estimators (profile MLE) in semiparametric models. We mainly focus on two prominent theorems: the Wilks phenomenon and Fisher expansion for the profile BILE are stated in a new fashion allowing finite samples and model misspecification. The method of study is also essentially different from the usual analysis of the semiparametric problem based on the notion of the hardest parametric submodel. Instead we derive finite sample deviation bounds for the linear approximation error for the gradient of the loglikelihood. This novel approach particularly allows to address the impact of the effective target and nuisance dimension On the accuracy of the results. The obtained nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements including the asymptotic normality and efficiency of the profile MLE. The general results are specified for the important special case of an i.i.d, sample and the analysis is exemplified with a single index model.
引用
收藏
页码:3077 / 3125
页数:49
相关论文
共 50 条
  • [1] Dimension Reduction and Semiparametric Estimation of Survival Models
    Xia, Yingcun
    Zhang, Dixin
    Xu, Jinfeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 278 - 290
  • [2] Critical dimension in the semiparametric Bernstein—von Mises theorem
    Maxim E. Panov
    Vladimir G. Spokoiny
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 232 - 255
  • [3] Critical dimension in the semiparametric Bernstein-von Mises theorem
    Panov, Maxim E.
    Spokoiny, Vladimir G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 (01) : 232 - 255
  • [4] An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model
    Huang, Ming-Yueh
    Chiang, Chin-Tsang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 1296 - 1310
  • [5] Semiparametric dimension reduction estimation for mean response with missing data
    Hu, Zonghui
    Follmann, Dean A.
    Qin, Jing
    BIOMETRIKA, 2010, 97 (02) : 305 - 319
  • [6] Semiparametric estimation of the Hong-Ou-Mandel profile
    Cimini, Valeria
    Albarelli, Francesco
    Gianani, Ilaria
    Barbieri, Marco
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [7] Semiparametric Estimation with Profile Algorithm for Longitudinal Binary Data
    Suliadi, Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) : 138 - 152
  • [8] Semiparametric smooth coefficient quantile estimation of the production profile
    Huang, Cliff J.
    Fu, Tsu-Tan
    Lai, Hung-Pin
    Yang, Yung-Lieh
    EMPIRICAL ECONOMICS, 2017, 52 (01) : 373 - 392
  • [9] Semiparametric smooth coefficient quantile estimation of the production profile
    Cliff J. Huang
    Tsu-Tan Fu
    Hung-Pin Lai
    Yung-Lieh Yang
    Empirical Economics, 2017, 52 : 373 - 392
  • [10] Semiparametric Stochastic Frontier Estimation via Profile Likelihood
    Martins-Filho, Carlos
    Yao, Feng
    ECONOMETRIC REVIEWS, 2015, 34 (04) : 413 - 451