Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Hensler compounds
被引:90
|
作者:
Kim, Kyoungdoc
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Kim, Kyoungdoc
[1
]
Ward, Logan
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Univ Chicago, Computat Inst, Chicago, IL 60637 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Ward, Logan
[1
,2
]
He, Jiangang
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
He, Jiangang
[1
]
Krishna, Amar
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Krishna, Amar
[3
]
Agrawal, Ankit
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Agrawal, Ankit
[3
]
Wolverton, C.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
Wolverton, C.
[1
]
机构:
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
Discovering novel, multicomponent crystalline materials is a complex task owing to the large space of feasible structures. Here we demonstrate a method to significantly accelerate materials discovery by using a machine learning (ML) model trained on density functional theory (DFT) data from the Open Quantum Materials Database (OQMD). Our ML model predicts the stability of a material based on its crystal structure and chemical composition, and we illustrate the effectiveness of the method by application to finding new quaternary Heusler (QH) compounds. Our ML-based approach can find new stable materials at a rate 30 times faster than undirected searches and we use it to predict 55 previously unknown, stable QH compounds. We find the accuracy of our ML model is higher when trained using the diversity of crystal structures available in the OQMD than when training on well-curated datasets which contain only a single family of crystal structures (i.e., QHs). The advantage of using diverse training data shows how large datasets, such as OQMD, are particularly valuable for materials discovery and that we need not train separate ML models to predict each different family of crystal structures. Compared to other proposed ML approaches, we find that our method performs best for small (<10(3)) and large (>10(5)) training set sizes. The excellent flexibility and accuracy of the approach presented here can be easily generalized to other types of crystals.
机构:
Univ Calif San Diego, Mat Virtual Lab, Dept Nanoengn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USAUniv Calif San Diego, Mat Virtual Lab, Dept Nanoengn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USA
机构:
Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
He, Jinlong
Munyaneza, Nuwayo Eric
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
Munyaneza, Nuwayo Eric
Varshney, Vikas
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
Varshney, Vikas
Chen, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
Chen, Wei
Liu, Guoliang
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
Virginia Polytech Inst & State Univ, Dept Chem Engn, Dept Mat Sci & Engn, Blacksburg, VA 24061 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
Liu, Guoliang
Li, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USAUniv Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
机构:
Univ Illinois, Dept Phys, Urbana, IL 61801 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA
Shapera, Ethan P.
Schleife, Andre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA