Fabrication of 50 nm Metallic Lines for High Frequency Devices

被引:0
|
作者
Liu, Xiaoyi [1 ,2 ]
Liao, Biyan [1 ,2 ]
Gao, Sheng [1 ,2 ]
Wang, Hong [1 ,2 ,3 ]
机构
[1] South China Univ Technol, Engn Lab Wide Band Gap Semicond Mat & Devices Gua, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Engn Res Ctr Optoelect, Sch Phys & Optoelect, Guangzhou 510640, Peoples R China
[3] South China Univ Technol, Zhongshan Inst Modern Ind Technol, Zhongshan 528437, Peoples R China
关键词
PERFORMANCE;
D O I
10.1109/icmmt45702.2019.8992410
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, several metals including titanium nitride (TiN), titanium (Ti), aluminum (Al), nickel (Ni) and gold (Au), were fabricated into metallic lines with line widths less than 50 nm through electron beam lithography (EBL) and dry-etching. The lines are defined by EBL and the line widths are further reduced by oxygen cleaning from over 50 nm into about 40nm. Besides, the angle and etching rate are adjusted by gas flow and power during etching process. With these metallic lines as gate electrodes, the cutoff frequency of high electron mobility transistors can reach more than 100 GHz, and this process can be used in metal interconnection of high frequency devices as well.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] FABRICATION OF SUB-10-NM SILICON LINES WITH MINIMUM FLUCTUATION
    NAMATSU, H
    NAGASE, M
    KURIHARA, K
    IWADATE, K
    FURUTA, T
    MURASE, K
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (04): : 1473 - 1476
  • [32] FABRICATION OF 30 NM METAL LINES WITH SUBSTRATE-STEP TECHNIQUES
    PROBER, DE
    FEUER, MD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 197 - 197
  • [33] Processing of 50 nm gate-length hydrogen terminated diamond FETs for high frequency and high power applications
    Moran, D. A. J.
    MacLaren, D. A.
    Porro, S.
    McLelland, H.
    John, P.
    Wilson, J. I. B.
    MICROELECTRONIC ENGINEERING, 2011, 88 (08) : 2691 - 2693
  • [34] Research of micro area piezoelectric properties of AlN films and fabrication of high frequency SAW devices
    Wang, Fang
    Xiao, Fuliang
    Song, Dianyou
    Qian, Lirong
    Feng, Yulin
    Fu, Bangran
    Dong, Kaifei
    Li, Can
    Zhang, Kailiang
    MICROELECTRONIC ENGINEERING, 2018, 199 : 63 - 68
  • [35] High frequency SAW devices
    Hines, JH
    Malocha, DC
    1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 177 - 180
  • [36] Fabrication and physics of similar to 2 nm islands for single electron devices
    Chen, W
    Ahmed, H
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06): : 2883 - 2887
  • [37] High frequency nanophotonic devices
    Bimberg, D.
    Fiol, G.
    Meuer, C.
    Laemmlin, M.
    Kuntz, M.
    NOVEL IN - PLANE SEMICONDUCTOR LASERS IV, 2007, 6485
  • [38] Integration of EUV lithography in the fabrication of 22-nm node devices
    Wood, Obert
    Koay, Chiew-Seng
    Petrillo, Karen
    Mizuno, Hiroyuki
    Raghunathan, Sudhar
    Arnold, John
    Horak, Dave
    Burkhardt, Martin
    Mcintyre, Gregory
    Deng, Yunfei
    La Fontaine, Bruno
    Okoroanyanwu, Uzodinma
    Tchikoulaeva, Anna
    Wallow, Tom
    Chen, James H. -C.
    Colburn, Matthew
    Fan, Susan S. -C.
    Haran, Bala S.
    Yin, Yunpeng
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES, 2009, 7271
  • [39] Fabrication of High-Reflective Cavity Mirrors for 457 nm Laser Based on Intracavity Frequency Doubling
    Liu Dongmei
    Li Wuyi
    Fu Xiuhua
    Zhang Jing
    Zhang Gong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2018, 45 (11):
  • [40] High performance 70 nm CMOS devices
    Xu, Q.X.
    Qian, H.
    Yin, H.X.
    Jia, L.
    Ji, H.H.
    Chen, B.Q.
    Zhu, Y.J.
    Liu, M.
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2001, 22 (02): : 134 - 139