Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide from 190 to 220 nm

被引:40
|
作者
Endo, Yoshiaki [1 ]
Danielache, Sebastian O. [2 ,3 ]
Ueno, Yuichiro [1 ,3 ,4 ]
Hattori, Shohei [5 ]
Johnson, Matthew S. [6 ]
Yoshida, Naohiro [3 ,5 ,7 ]
Kjaergaard, Henrik G. [6 ]
机构
[1] Tokyo Inst Technol, Dept Earth & Planetary Sci, Tokyo 152, Japan
[2] Sophia Univ, Fac Sci & Technol, Tokyo 102, Japan
[3] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 152, Japan
[4] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Precambrian Ecosyst Lab, Yokosuka, Kanagawa, Japan
[5] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Environm Chem & Engn, Yokohama, Kanagawa 227, Japan
[6] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
[7] Tokyo Inst Technol, Dept Environm Sci & Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 227, Japan
关键词
ultraviolet absorption spectra; planetary atmospheres; isotopic fractionation; sulfur isotopes; mass-independent fractionation; MASS-INDEPENDENT FRACTIONATION; ISOTOPIC FRACTIONATION; SO2; PHOTOLYSIS; 295; K; OXIDATION; BAND; OCS; PHOTOEXCITATION; DISSOCIATION; ATMOSPHERE;
D O I
10.1002/2014JD021671
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The ultraviolet absorption cross sections of the SO2 isotopologues are essential to understanding the photochemical fractionation of sulfur isotopes in planetary atmospheres. We present measurements of the absorption cross sections of (SO2)-S-32, (SO2)-S-33, (SO2)-S-34, and (SO2)-S-36, recorded from 190 to 220nm at room temperature with a resolution of 0.1nm (25cm(-1)) made using a dual-beam photospectrometer. The measured absorption cross sections show an apparent pressure dependence and a newly developed analytical model shows that this is caused by underresolved fine structure. The model made possible the calculation of absorption cross sections at the zero-pressure limit that can be used to calculate photolysis rates for atmospheric scenarios. The (SO2)-S-32, (SO2)-S-33, and (SO2)-S-34 cross sections improve upon previously published spectra including fine structure and peak widths. This is the first report of absolute absorption cross sections of the (SO2)-S-36 isotopologue for the (CB2)-B-1-X(1)A(2) band where the amplitude of the vibrational structure is smaller than the other isotopologues throughout the spectrum. Based on the new results, solar UV photodissociation of SO2 produces (34)epsilon, (33), and (36) isotopic fractionations of +4.611.6, +8.89.0, and -8.8 +/- 19.6 parts per thousand, respectively. From these spectra isotopic effects during photolysis in the Archean atmosphere can be calculated and compared to the Archean sedimentary record. Our results suggest that broadband solar UV photolysis is capable of producing the mass-independent fractionation observed in the Archean sedimentary record without involving shielding by specific gaseous compounds in the atmosphere including SO2 itself. The estimated magnitude of (33), for example, is close to the maximum S-33 observed in the geological record.
引用
收藏
页码:2546 / 2557
页数:12
相关论文
共 50 条
  • [21] Isotopic 32S/33S ratio as a diagnostic of presolar grains from novae
    Parikh, A.
    Wimmer, K.
    Faestermann, T.
    Hertenberger, R.
    Jose, J.
    Wirth, H. -F.
    Hinke, C.
    Kruecken, R.
    Seiler, D.
    Steiger, K.
    Straub, K.
    PHYSICS LETTERS B, 2014, 737 : 314 - 319
  • [22] Origin of the Neoarchean VMS-BIF Metallogenic Association in the Qingyuan Greenstone Belt, North China Craton: Constraints from Geology, Geochemistry, and Iron and Multiple Sulfur (δ33S, δ34S, and δ36S) Isotopes
    Peng, Zidong
    Wang, Changle
    Poulton, Simon W.
    Tong, Xiaoxue
    Konhauser, Kurt O.
    Zhang, Lianchang
    ECONOMIC GEOLOGY, 2022, 117 (06) : 1275 - 1298
  • [23] The effect of sulfate-δ18O upon on-line sulfate-δ34S analysis, and implications for measurements of δ33S and Δ33S
    Poulson, SR
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2005, 19 (02) : 105 - 107
  • [24] Combined 34S/33S/32S, Pb-isotope and trace element data for a pyritic banded-iron formation from the 3.71 Ga Isua Greenstone Belt
    Young, E
    Kamber, BS
    Baublys, KA
    Golding, SD
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A781 - A781
  • [25] Preparation and characterization of 33S samples for 33S(n,α)30Si cross-section measurements at the n_TOF facility at CERN
    Praena, J.
    Ferrer, F. J.
    Vollenberg, W.
    Sabate-Gilarte, M.
    Fernandez, B.
    Garcia-Lopez, J.
    Porras, I.
    Quesada, J. M.
    Altstadt, S.
    Andrzejewski, J.
    Audouin, L.
    Becares, V.
    Barbagallo, M.
    Becvar, F.
    Belloni, F.
    Berthoumieux, E.
    Billowes, J.
    Boccone, V.
    Bosnar, D.
    Brugger, M.
    Calvino, F.
    Calviani, M.
    Cano-Ott, D.
    Carrapico, C.
    Cerutti, F.
    Chiaveri, E.
    Chin, M.
    Colonna, N.
    Cortes, G.
    Cortes-Giraldo, M. A.
    Diakaki, M.
    Dietz, M.
    Domingo-Pardo, C.
    Dressler, R.
    Duran, I.
    Eleftheriadis, C.
    Ferrari, A.
    Fraval, K.
    Furman, V.
    Goebel, K.
    Gomez-Hornillos, M. B.
    Ganesan, S.
    Garcia, A. R.
    Giubrone, G.
    Goncalves, I. F.
    Gonzalez-Romero, E.
    Goverdovski, A.
    Griesmayer, E.
    Guerrero, C.
    Gunsing, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 890 : 142 - 147
  • [26] Multiple sulfur isotopes (δ34S, Δ33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan
    Siedenberg, Katharina
    Strauss, Harald
    Podlaha, Olaf
    van den Born, Sander
    ORGANIC GEOCHEMISTRY, 2018, 125 : 29 - 40
  • [27] Pyrite δ34S and Δ33S constraints on sulfur cycling at sublacustrine hydrothermal vents in Yellowstone Lake, Wyoming, USA
    Fowler, Andrew P. G.
    Liu, Qiu-li
    Huang, Yongshu
    Tan, Chunyang
    Volk, Michael W. R.
    Shanks, W. C. Pat, III
    Seyfried, William, Jr.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2019, 265 : 148 - 162
  • [28] Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S
    Whitehouse, Martin J.
    GEOSTANDARDS AND GEOANALYTICAL RESEARCH, 2013, 37 (01) : 19 - 33
  • [29] Alpha-particle resonances and clusters in 32S, 34S, 36Ar and 40Ca
    Norrby, Markus
    10TH INTERNATIONAL CONFERENCE ON CLUSTERING ASPECTS OF NUCLEAR STRUCTURE AND DYNAMICS (CLUSTER'12), 2013, 436
  • [30] Sulfur (34S/32S) isotope composition of gypsum and implications for deep cave formation on the Nullarbor Plain, Australia
    Lipar, Matej
    Ferk, Mateja
    Lojen, Sonja
    Barham, Milo
    INTERNATIONAL JOURNAL OF SPELEOLOGY, 2019, 48 (01) : 1 - 9