Prediction study on in-situ reduction of thermal stress using combined laser beams in laser powder bed fusion

被引:23
|
作者
Chen, Changpeng [1 ]
Xiao, Zhongxu [1 ]
Wang, Yilong [1 ]
Yang, Xu [1 ]
Zhu, Haihong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
基金
中国博士后科学基金;
关键词
Laser powder bed fusion; Residual stress; Simulation; Combined laser beam; RESIDUAL-STRESS; PROCESS PARAMETERS; MECHANICAL-PROPERTIES; MICROSTRUCTURE; DISTORTION; STRATEGY; PARTS;
D O I
10.1016/j.addma.2021.102221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High thermal stress induced by extremely high temperature gradient significantly hinders the development of the laser powder bed fusion (LPBF). In this study, an in-situ stress control method based on the combined laser beams was proposed, in which a second laser beam was added to release the thermal stress during the process. The effect of the combined laser beams on the temperature distribution and thermal stress in LPBF was studied. A definition of the equivalent scan length was adopted to simulate the effect of the scan length. It was found that when the second beam was used, the post-heating strategy can reduce the residual stress better than the preheating strategy. The stress relief effect was close to the scan direction of the second beam and the vertical post-heating pattern was recommended to in-situ reduce the thermal stress. More obvious thermal stress cycles and the thermal stress peaks appeared in the long scan length. The stress release effect caused by the second beam decreased with the increase of the scan length, indicating that the scan length should be also reduced even if the second beam was used. The simulated results were indirectly verified by the experimental data with different re-scanning strategies and scan lengths. The purpose of this paper is expected to significantly in-situ reduce the thermal stress during the process without increasing the manufacturing time.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An integrated simulation model towards laser powder bed fusion in-situ alloying technology
    Hou, Yaqing
    Su, Hang
    Zhang, Hao
    Li, Fafa
    Wang, Xuandong
    He, Yazhou
    He, Dupeng
    MATERIALS & DESIGN, 2023, 228
  • [32] In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
    McCann, Ronan
    Obeidi, Muhannad A.
    Hughes, Cian
    McCarthy, Eanna
    Egan, Darragh S.
    Vijayaraghavan, Rajani K.
    Joshi, Ajey M.
    Garzon, Victor Acinas
    Dowling, Denis P.
    McNally, Patrick J.
    Brabazon, Dermot
    ADDITIVE MANUFACTURING, 2021, 45
  • [33] In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion
    Hojjatzadeh, S. Mohammad H.
    Guo, Qilin
    Parab, Niranjan D.
    Qu, Minglei
    Escano, Luis, I
    Fezzaa, Kamel
    Everhart, Wes
    Sun, Tao
    Chen, Lianyi
    MATERIALS, 2021, 14 (11)
  • [34] An Image Segmentation Framework for In-Situ Monitoring in Laser Powder Bed Fusion Additive Manufacturing
    Xie, Jason
    Jiang, Tianyu
    Chen, Xu
    IFAC PAPERSONLINE, 2022, 55 (37): : 800 - 806
  • [35] In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion
    Hasanabadi, Mahyar
    Keshavarzkermai, Ali
    Asgari, Hamed
    Azizi, Nadia
    Gerlich, Adrian
    Toyserkani, Ehsan
    ADDITIVE MANUFACTURING LETTERS, 2023, 4
  • [36] Prediction of microstructure in laser powder bed fusion process
    Acharya, Ranadip
    Sharon, John A.
    Staroselsky, Alexander
    ACTA MATERIALIA, 2017, 124 : 360 - 371
  • [37] In-situ infrared thermographic inspection for local powder layer thickness measurement in laser powder bed fusion
    Liu, Tao
    Lough, Cody S.
    Sehhat, Hossein
    Ren, Yi Ming
    Christofides, Panagiotis D.
    Kinzel, Edward C.
    Leu, Ming C.
    ADDITIVE MANUFACTURING, 2022, 55
  • [38] Evaluating the thermal characteristics of laser powder bed fusion
    Furumoto, Tatsuaki
    Oishi, Kazushi
    Abe, Satoshi
    Tsubouchi, Kotaro
    Yamaguchi, Mitsugu
    Clare, Adam T.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 299
  • [39] Transition mechanism of melt depth in vacuum during laser powder bed fusion using in-situ X-ray and thermal imaging
    Ogura, Tomoya
    Wakai, Yuki
    Nakano, Shizuka
    Sato, Naoko
    Kajino, Satoshi
    Suzuki, Shinsuke
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (06) : 1687 - 1699
  • [40] Transition mechanism of melt depth in vacuum during laser powder bed fusion using in-situ X-ray and thermal imaging
    Tomoya Ogura
    Yuki Wakai
    Shizuka Nakano
    Naoko Sato
    Satoshi Kajino
    Shinsuke Suzuki
    Progress in Additive Manufacturing, 2023, 8 : 1687 - 1699