AN EXTRAGRADIENT METHOD FOR VECTOR EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS

被引:10
|
作者
Iusem, Alfredo N. [1 ]
Mohebbi, Vahid [2 ]
机构
[1] Inst Matematica Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Texas El Paso, Dept Pharmaceut Sci, 500 W Univ Ave, El Paso, TX 79968 USA
来源
关键词
Extragradient method; Hadamard manifold; Linesearch; Vector equilibrium problem; Vector valued bifunction; GENERALIZED MONOTONE BIFUNCTIONS; PROXIMAL POINT ALGORITHM; VARIATIONAL-INEQUALITIES; OPTIMIZATION; EXISTENCE;
D O I
10.23952/jnva.5.2021.3.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the vector equilibrium problem in Hadamard manifolds, which extends the scalar equilibrium problem to vector valued bifunctions. We propose an extragradient method for solving this problem. Under suitable assumptions on the bifunction, we prove that the generated sequence converges to a solution of the problem. We also give some examples of Hadamard manifolds and vector equilibrium problems to which our main result can be applied. Finally, we present some numerical experiments.
引用
收藏
页码:459 / 476
页数:18
相关论文
共 50 条
  • [41] Combinatorial Convexity in Hadamard Manifolds: Existence for Equilibrium Problems
    Bento, Glaydston de Carvalho
    Cruz Neto, Joao Xavier
    Lira Melo, Italo Dowell
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) : 1087 - 1105
  • [42] A self-adaptive extragradient method for fixed-point and pseudomonotone equilibrium problems in Hadamard spaces
    Aremu, Kazeem Olalekan
    Jolaoso, Lateef Olakunle
    Oyewole, Olawale Kazeem
    [J]. FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2023, 2023 (01):
  • [43] Viscosity extragradient with modified inertial method for solving equilibrium problems and fixed point problem in Hadamard manifold
    Ndlovu, P. V.
    Jolaoso, L. O.
    Aphane, M.
    Abass, H. A.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01)
  • [44] Viscosity extragradient with modified inertial method for solving equilibrium problems and fixed point problem in Hadamard manifold
    P. V. Ndlovu
    L. O. Jolaoso
    M. Aphane
    H. A. Abass
    [J]. Journal of Inequalities and Applications, 2024
  • [45] Interior proximal extragradient method for equilibrium problems
    Langenberg, Nils
    [J]. OPTIMIZATION, 2015, 64 (10) : 2145 - 2161
  • [46] The subgradient extragradient method extended to equilibrium problems
    Pham Ngoc Anh
    Le Thi Hoai An
    [J]. OPTIMIZATION, 2015, 64 (02) : 225 - 248
  • [47] The new extragradient method extended to equilibrium problems
    Liu, Ying
    Kong, Hang
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2113 - 2126
  • [48] An Existence Result for the Generalized Vector Equilibrium Problem on Hadamard Manifolds
    Batista, E. E. A.
    Bento, G. C.
    Ferreira, O. P.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (02) : 550 - 557
  • [49] Computational Errors of the Extragradient Method for Equilibrium Problems
    Pham Ngoc Anh
    Nguyen Duc Hien
    Pham Minh Tuan
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2835 - 2858
  • [50] The subgradient extragradient method for pseudomonotone equilibrium problems
    Dadashi, Vahid
    Iyiola, Olaniyi S.
    Shehu, Yekini
    [J]. OPTIMIZATION, 2020, 69 (04) : 901 - 923