Urban Water Extraction with UAV High-Resolution Remote Sensing Data Based on an Improved U-Net Model

被引:30
|
作者
Li, Wenning [1 ,2 ]
Li, Yi [1 ]
Gong, Jianhua [1 ,2 ,3 ]
Feng, Quanlong [4 ]
Zhou, Jieping [1 ]
Sun, Jun [1 ]
Shi, Chenhui [1 ,2 ]
Hu, Weidong [3 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Engn Res Ctr Geoinformat, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang CAS Applicat Ctr Geoinformat, Jiaxing 314100, Peoples R China
[4] China Agr Univ, Coll Land Sci & Technol, Beijing 100193, Peoples R China
[5] Jiaxing Supersea Informat Technol Co Ltd, Jiaxing 314100, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; surface water extraction; unmanned aerial vehicle (UAV); grey level co-occurrence matrix; visual features; RANDOM FOREST; TEXTURE; IMAGERY; AREAS; DISCRIMINATION; ALGORITHM; INDEX;
D O I
10.3390/rs13163165
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Obtaining water body images quickly and reliably is important to guide human production activities and study urban change. This paper presents a fast and accurate method to identify water bodies in complex environments based on UAV high-resolution images. First, an improved U-Net (SU-Net) model is proposed in this paper. By increasing the number of connections in the middle layer of the neural network, more image features can be retained through S-shaped circular connections. Second, aiming at the interference of mixed ground objects and dark ground objects on water detection, the fusion of a deep learning network and visual features is investigated. We analyse the influence of a wavelet transform and grey level cooccurrence matrix (GLCM) on water extraction. Using a confusion matrix to evaluate accuracy, the following conclusions are drawn: (1) Compared with existing methods, the SU-Net method achieves a significant improvement in accuracy, and the overall accuracy (OA) is 96.25%. The kappa coefficient (KC) is 0.952. (2) SU-Net combined with the GLCM has a higher accuracy (OA is 97.4%) and robustness in distinguishing mixed and dark objects. Based on this method, a distinct water boundary in urban areas, which provides data for urban water vector mapping, can be obtained.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Water Chlorophyll Estimation in an Urban Canal System With High-Resolution Remote Sensing Data
    Zhou, Xiran
    Chen, Jiawei
    Rakstad, Todd E.
    Ploughe, Mike
    Tang, Pingbo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) : 1876 - 1880
  • [42] Improved U-Net remote sensing image semantic segmentation method
    Hu G.
    Yang C.
    Xu L.
    Shang H.
    Wang Z.
    Qin Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 980 - 989
  • [43] Improved U-Net Network Segmentation Method for Remote Sensing Image
    Zhong, Letian
    Lin, Yong
    Sul, Yian
    Fang, Xianbao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1034 - 1039
  • [44] An improved U-Net method for the semantic segmentation of remote sensing images
    Zhongbin Su
    Wei Li
    Zheng Ma
    Rui Gao
    Applied Intelligence, 2022, 52 : 3276 - 3288
  • [45] An improved U-Net method for the semantic segmentation of remote sensing images
    Su, Zhongbin
    Li, Wei
    Ma, Zheng
    Gao, Rui
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3276 - 3288
  • [46] Intelligent Identification Method of Crop Species Using Improved U-Net Network in UAV Remote Sensing Image
    Liu, Zhixin
    Su, Boning
    Lv, Fang
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [47] DDU-Net: Dual-Decoder-U-Net for Road Extraction Using High-Resolution Remote Sensing Images
    Wang, Ying
    Peng, Yuexing
    Li, Wei
    Alexandropoulos, George C.
    Yu, Junchuan
    Ge, Daqing
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] MSAU-NET: ROAD EXTRACTION BASED ON MULTI-HEADED SELF-ATTENTION MECHANISM AND U-NET WITH HIGH RESOLUTION REMOTE SENSING IMAGES
    Yu, Hang
    Guo, Yuru
    Liu, Zhiheng
    Zhou, Suiping
    Li, Chenyang
    Zhang, Wenjie
    Qi, Wenjuan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6898 - 6900
  • [49] Mixer U-Net: An Improved Automatic Road Extraction from UAV Imagery
    Sultonov, Furkat
    Park, Jun-Hyun
    Yun, Sangseok
    Lim, Dong-Woo
    Kang, Jae-Mo
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [50] Design of VGG Structured U-Net Model for Remote Sensing Green Space Information Extraction
    Tong, Shan
    Li, Shaokang
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2025, 9 (01)