A note on "Ranking generalized exponential trapezoidal fuzzy numbers based on variance"

被引:2
|
作者
Gupta, Gourav [1 ]
Kumar, Amit [1 ]
Appadoo, S. S. [2 ]
机构
[1] Thapar Univ, Sch Math, Patiala 147004, Punjab, India
[2] Univ Manitoba, Asper Sch Business, Dept Supply Chain Management, Winnipeg, MB R3T 2N2, Canada
关键词
Exponential trapezoidal fuzzy numbers; ranking method; variance;
D O I
10.3233/IFS-162134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that the ranking of generalized fuzzy numbers depend upon the height of fuzzy numbers. In this note, it is shown that the method, proposed by Rezvani [Applied Mathematics and Computation 262 (2015) 191-198] for ranking of generalized exponential trapezoidal fuzzy numbers, is independent from height of fuzzy numbers. Hence, it is not genuine to use this method for ranking of generalized exponential trapezoidal fuzzy numbers.
引用
收藏
页码:213 / 215
页数:3
相关论文
共 50 条
  • [31] Arithmetic of Fuzzy Numbers in Generalized Trapezoidal Form
    Koroteev M.V.
    Terelyanskii P.V.
    Ivanyuk V.A.
    Journal of Mathematical Sciences, 2016, 216 (5) : 696 - 701
  • [32] A Sophisticated Ranking Method of Fuzzy Numbers Based on the Concept of Exponential Area
    Dutta, Palash
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2021, 17 (02) : 303 - 318
  • [33] Ranking generalized fuzzy numbers based on centroid and rank index
    Chi, Ha Thi Xuan
    Yu, Vincent F.
    APPLIED SOFT COMPUTING, 2018, 68 : 283 - 292
  • [34] Ranking trapezoidal fuzzy numbers using a parametric relation pair
    Dombi, Jozsef
    Jonas, Tamas
    FUZZY SETS AND SYSTEMS, 2020, 399 : 20 - 43
  • [35] A New Ranking Principle For Ordering Trapezoidal Intuitionistic Fuzzy Numbers
    Velu, Lakshmana Gomathi Nayagam
    Selvaraj, Jeevaraj
    Ponnialagan, Dhanasekaran
    COMPLEXITY, 2017,
  • [36] Ranking trapezoidal fuzzy numbers using a parametric relation pair
    Jónás, Tamás (jonas@gti.elte.hu), 1600, Elsevier B.V. (399):
  • [37] A Novel Ranking Method for Generalized Fuzzy Numbers Based on Fuzzy Superiority Degree
    Xu, Menghui
    Qiu, Zhiping
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 6 - 16
  • [38] FUZZY RISK ANALYSIS BASED ON A NEW METHOD FOR RANKING GENERALIZED FUZZY NUMBERS
    Wu, D.
    Liu, X.
    Xue, F.
    Zheng, H.
    Shou, Y.
    Jiang, W.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2018, 15 (03): : 117 - 139
  • [39] Multi-criteria decision-making using a complete ranking of generalized trapezoidal fuzzy numbers
    Marimuthu, Dharmalingam
    Mahapatra, G. S.
    SOFT COMPUTING, 2021, 25 (15) : 9859 - 9871
  • [40] Multi-criteria decision-making using a complete ranking of generalized trapezoidal fuzzy numbers
    Dharmalingam Marimuthu
    G. S. Mahapatra
    Soft Computing, 2021, 25 : 9859 - 9871