Fair and Comprehensive Benchmarking of Machine Learning Processing Chips

被引:13
|
作者
Burr, Geoffrey W. [1 ]
Lim, SukHwan [2 ]
Murmann, Boris [3 ]
Venkatesan, Rangharajan [4 ]
Verhelst, Marian [5 ,6 ]
机构
[1] IBM Res Almaden, Cupertino, CA 95014 USA
[2] Samsung, Hwaseong Si 18448, South Korea
[3] Stanford Univ, Stanford, CA 94305 USA
[4] NVIDIA Corp, Santa Clara, CA 95051 USA
[5] MICAS KU Leuven, B-3001 Heverlee, Belgium
[6] IMEC, B-3001 Heverlee, Belgium
关键词
YY Benchmark testing; Computer architecture; Measurement; Integrated circuit modeling; Best practices; Computational modeling; AI processing; ML accelerator; chip evaluation; benchmarking; deep learning; architecture; circuit; ACCELERATOR;
D O I
10.1109/MDAT.2021.3063366
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article provides an overview of benchmarking strategies at a different set of abstraction levels and related best practices in each, while working to also give an overall view of impact. © 2013 IEEE.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [1] Benchmarking machine learning methods for comprehensive chemical fingerprinting and pattern recognition
    Reichenbach, Stephen E.
    Zini, Claudia A.
    Nicolli, Karine P.
    Welke, Juliane E.
    Cordero, Chiara
    Tao, Qingping
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1595 : 158 - 167
  • [2] TFB: Towards Comprehensive and Fair Benchmarking of TimeSeries Forecasting Methods
    Qiu, Xiangfei
    Hu, Jilin
    Zhou, Lekui
    Wu, Xingjian
    Du, Junyang
    Zhang, Buang
    Guo, Chenjuan
    Zhou, Aoying
    Jensen, Christian S.
    Sheng, Zhenli
    Yang, Bin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (09): : 2363 - 2377
  • [3] A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction
    Eckhart, Lea
    Lenhof, Kerstin
    Rolli, Lisa-Marie
    Lenhof, Hans-Peter
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [4] Fair Algorithms for Machine Learning
    Kearns, Michael
    EC'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2017, : 1 - 1
  • [5] Quantum Fair Machine Learning
    Perrier, Elija
    AIES '21: PROCEEDINGS OF THE 2021 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2021, : 843 - 853
  • [6] Paradoxes in Fair Machine Learning
    Golz, Paul
    Kahng, Anson
    Procaccia, Ariel D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Survey and Benchmarking of Machine Learning Accelerators
    Reuther, Albert
    Michaleas, Peter
    Jones, Michael
    Gadepally, Vijay
    Samsi, Siddharth
    Kepner, Jeremy
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [8] Geochemistry and machine learning: methods and benchmarking
    Prasianakis, N. I.
    Laloy, E.
    Jacques, D.
    Meeussen, J. C. L.
    Miron, G. D.
    Kulik, D. A.
    Idiart, A.
    Demirer, E.
    Coene, E.
    Cochepin, B.
    Leconte, M.
    Savino, M. E.
    Samper-Pilar, J.
    De Lucia, M.
    Churakov, S. V.
    Kolditz, O.
    Yang, C.
    Samper, J.
    Claret, F.
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (05)
  • [9] A benchmarking crisis in biomedical machine learning
    Faisal Mahmood
    Nature Medicine, 2025, 31 (4) : 1060 - 1060
  • [10] Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review
    Houssein, Essam H.
    Mohamed, Rehab E.
    Ali, Abdelmgeid A.
    IEEE ACCESS, 2021, 9 : 140628 - 140653