Coherent combining of multi-wavelength fiber amplifiers using a stochastic parallel gradient descent algorithm

被引:3
|
作者
Wang, Xiaolin [1 ]
Zhou, Pu [1 ]
Ma, Yanxing [1 ]
Ma, Haotong [1 ]
Xu, Xiaojun [1 ]
Liu, Zejin [1 ]
Zhao, Yijun [1 ]
机构
[1] Natl Univ Def Technol, Coll Optoelect Sci & Engn, Changsha 410073, Hunan, Peoples R China
关键词
fiber laser; coherent combining; multi-wavelength; non-single frequency; stochastic parallel gradient descent algorithm; BEAM COMBINATION; LASERS; POWER; OPTIMIZATION;
D O I
10.1088/2040-8978/12/7/075701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multi-wavelength and non-single-frequency seed lasers can be used to suppress stimulated Brillouin scattering and improve the ultimate output power of a fiber laser amplifier. Coherent combining of non-single-frequency and/or multi-wavelength lasers/amplifiers is a promising way to obtain much higher total output power than from coherent combining of single-frequency lasers/amplifiers. Using a stochastic parallel gradient descent algorithm, we demonstrate coherent combining of four-channel multi-wavelength lasers in a master oscillator power amplifier (MOPA) configuration. Four lasers with different wavelengths, namely two non-single-frequency and two single-frequency lasers, are used. The mean power of the main lobe in the closed-loop case is three times that for the open-loop case, approaching 75% of its ideal value. The coherent combining of multi-wavelength and non-single-frequency lasers in a MOPA configuration is validated, and a feasible approach for scaling to high power coherent combining is provided.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Multimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm
    Zhao, Hai-Chuan
    Ma, Hao-Tong
    Zhou, Pu
    Wang, Xiao-Lin
    Ma, Yan-Xing
    Li, Xiao
    Xu, Xiao-Jun
    Zhao, Yi-Jun
    OPTICS COMMUNICATIONS, 2011, 284 (02) : 613 - 615
  • [32] Bandwidth and stability of the stochastic parallel gradient descent algorithm for phase control in coherent beam combination
    Bjorck, Matts
    Henriksson, Markus
    Sjokvist, Lars
    APPLIED OPTICS, 2021, 60 (15) : 4366 - 4374
  • [33] Investigations of incoherent beam combining using stochastic parallel gradient descent with retroreflector target
    Henriksson, Markus
    Brannlund, Carl
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES XVI, 2019, 11161
  • [34] Telescope Alignment Method Using a Modified Stochastic Parallel Gradient Descent Algorithm
    Li, Min
    Liu, Xin
    Zhang, Junbo
    Xian, Hao
    PHOTONICS, 2024, 11 (11)
  • [35] Digital Image Correlation Using Stochastic Parallel-Gradient-Descent Algorithm
    Long, X.
    Fu, S.
    Qi, Z.
    Yang, X.
    Yu, Qifeng
    EXPERIMENTAL MECHANICS, 2013, 53 (04) : 571 - 578
  • [36] Digital Image Correlation Using Stochastic Parallel-Gradient-Descent Algorithm
    X. Long
    S. Fu
    Z. Qi
    X. Yang
    Qifeng Yu
    Experimental Mechanics, 2013, 53 : 571 - 578
  • [37] Digital image correlation using stochastic parallel-gradient-descent algorithm
    Long, X.
    Fu, S.
    Qi, Z.
    Yang, X.
    Yu, Qifeng
    Proceedings of the Society for Experimental Mechanics, Inc., 2013, 53 (01): : 571 - 578
  • [38] Numerical simulation and optimization of broadband fiber Raman amplifiers using multi-wavelength pumps
    Tong, Zhi
    Wei, Huai
    Jian, Shuisheng
    Guangxue Xuebao/Acta Optica Sinica, 2003, 23 (02): : 193 - 196
  • [39] Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm
    常洪祥
    奚加超
    粟荣涛
    马鹏飞
    马阎星
    周朴
    ChineseOpticsLetters, 2020, 18 (10) : 47 - 51
  • [40] Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm
    Chang, Hongxiang
    Xi, Jiachao
    Su, Rongtao
    Ma, Pengfei
    Ma, Yanxing
    Zhou, Pu
    CHINESE OPTICS LETTERS, 2020, 18 (10)