Quint points lattice in a driven Belousov-Zhabotinsky reaction model

被引:19
|
作者
Field, Richard J. [1 ]
Freire, Joana G. [2 ,3 ]
Gallas, Jason A. C. [3 ,4 ]
机构
[1] Univ Montana, Dept Chem, Missoula, MT 59812 USA
[2] Univ Lisbon, Inst Dom Luiz, P-1749016 Lisbon, Portugal
[3] Inst Altos Estudos Paraiba, BR-58039190 Joao Pessoa, Paraiba, Brazil
[4] Complex Sci Ctr, 9225 Collins Ave,Suite 1208, Surfside, FL 33154 USA
关键词
CHEMICAL-SYSTEMS; CHAOS; OSCILLATIONS; PERIODICITY;
D O I
10.1063/5.0047167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report the discovery of a regular lattice of exceptional quint points in a periodically driven oscillator, namely, in the frequency-amplitude control parameter space of a photochemically periodically perturbed ruthenium-catalyzed Belousov-Zhabotinsky reaction model. Quint points are singular boundary points where five distinct stable oscillatory phases coalesce. While spikes of the activator show a smooth and continuous variation, the spikes of the inhibitor show an intricate but regular branching into a myriad of stable phases that have fivefold contact points. Such boundary points form a wide parameter lattice as a function of the frequency and amplitude of light absorption. These findings revise current knowledge about the topology of the control parameter space of a celebrated prototypical example of an oscillating chemical reaction.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Model of the Belousov-Zhabotinsky Reaction
    Stys, Dalibor
    Nahlik, Tomas
    Zhyrova, Anna
    Rychtarikova, Renata
    Papacek, Stepan
    Cisar, Petr
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, HPCSE 2015, 2016, 9611 : 171 - 185
  • [2] SIMPLIFIED MODEL FOR BELOUSOV-ZHABOTINSKY REACTION
    TOMITA, K
    ITO, A
    OHTA, T
    JOURNAL OF THEORETICAL BIOLOGY, 1977, 68 (04) : 459 - 481
  • [3] Chemically driven convection in the Belousov-Zhabotinsky reaction
    Matthiessen, K
    Muller, SC
    MATERIALS AND FLUIDS UNDER LOW GRAVITY, 1996, 464 : 371 - 384
  • [4] Traveling waves for a model of the Belousov-Zhabotinsky reaction
    Trofimchuk, Elena
    Pinto, Manuel
    Trofimchuk, Sergei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3690 - 3714
  • [5] A mathematical model for bifurcations in a Belousov-Zhabotinsky reaction
    Chen, G
    PHYSICA D, 2000, 145 (3-4): : 309 - 329
  • [6] Contextualization of the Belousov-Zhabotinsky reaction
    Diaz, Drew
    Crawford, Mary
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [7] Riddled basins in a model for the Belousov-Zhabotinsky reaction
    Woltering, M
    Markus, M
    CHEMICAL PHYSICS LETTERS, 2000, 321 (5-6) : 473 - 478
  • [8] Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model
    Wang, Xiaoli
    Chang, Yu
    Xu, Dashun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [9] MODEL FOR TEMPORAL OSCILLATIONS IN BELOUSOV-ZHABOTINSKY REACTION
    MURRAY, JD
    JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (09): : 3610 - 3613
  • [10] On the Origin of the Belousov-Zhabotinsky Reaction
    Pechenkin A.
    Biological Theory, 2009, 4 (2) : 196 - 206