Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)2/N-Doped Graphene

被引:74
|
作者
Long, Baojun [1 ]
Zhao, Yuanmeng [1 ]
Cao, Peiyu [1 ]
Wei, Wen [1 ]
Mo, Yan [1 ]
Liu, Juejing [2 ,3 ]
Sun, Cheng-Jun [4 ]
Guo, Xiaofeng [2 ,3 ]
Shan, Changsheng [1 ]
Zeng, Ming-Hua [1 ,5 ]
机构
[1] Hubei Univ, Coll Chem & Chem Engn, Key Lab Synth & Applicat Organ Funct, Minist Educ, Wuhan 430062, Hubei, Peoples R China
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[3] Washington State Univ, Alexandra Navrotsky Inst Expt Thermodynam, Pullman, WA 99164 USA
[4] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[5] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Key Lab Chem & Mol Engn Med Resources, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ENZYME; NANOPARTICLES; CATALYSIS; CARBON; SENSOR;
D O I
10.1021/acs.analchem.1c04912
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Conventional nanomaterials in electrochemical nonenzymatic sensing face huge challenge due to their complex size-, surface-, and composition-dependent catalytic properties and low active site density. In this work, we designed a single-atom Pt supported on Ni(OH)(2) nanoplates/nitrogen-doped graphene (Pt-1/Ni(OH)(2)/NG) as the first example for constructing a single-atom catalyst based electrochemical nonenzymatic glucose sensor. The resulting Pt-1/Ni(OH)(2)/NG exhibited a low anode peak potential of 0.48 V and high sensitivity of 220.75 mu A mM(-1) cm(-2) toward glucose, which are 45 mV lower and 12 times higher than those of Ni(OH)(2), respectively. The catalyst also showed excellent selectivity for several important interferences, short response time of 4.6 s, and high stability over 4 weeks. Experimental and density functional theory (DFT) calculated results reveal that the improved performance of Pt-1/Ni(OH)(2)/NG could be attributed to stronger binding strength of glucose on single-atom Pt active centers and their surrounding Ni atoms, combined with fast electron transfer ability by the adding of the highly conductive NG. This research sheds light on the applications of SACs in the field of electrochemical nonenzymatic sensing.
引用
收藏
页码:1919 / 1924
页数:6
相关论文
共 50 条
  • [41] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [42] MoS2-Au@Pt nanohybrids as a sensing platform for electrochemical nonenzymatic glucose detection
    Su, Shao
    Lu, Zaiwei
    Li, Jing
    Hao, Qing
    Liu, Wei
    Zhu, Changfeng
    Shen, Xizhong
    Shi, Jiye
    Wang, Lianhui
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (09) : 6750 - 6755
  • [43] Iron Single-Atom Anchored on N-Doped Carbon Nanozymes for Chlorpyrifos Detection and Antibacterial Applications
    Ren, Enxiang
    Zhang, Xing
    Lu, Guo-Ping
    Sohail, Muhammad
    Hu, Jun
    Chen, Zhong
    Fan, Daidi
    Lin, Yamei
    ACS APPLIED NANO MATERIALS, 2023, 6 (16) : 15038 - 15047
  • [44] Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection
    Zhan, Beibei
    Liu, Changbing
    Chen, Huaping
    Shi, Huaxia
    Wang, Lianhui
    Chen, Peng
    Huang, Wei
    Dong, Xiaochen
    NANOSCALE, 2014, 6 (13) : 7424 - 7429
  • [45] Boron-Doped Nickel-Nitrogen-Carbon Single-Atom Catalyst for Boosting Electrochemical CO2 Reduction
    Song, Jian
    Lei, Xue
    Mu, Jiali
    Li, Jingwei
    Song, Xiangen
    Yan, Li
    Ding, Yunjie
    SMALL, 2023, 19 (52)
  • [46] Electrochemical sensor based on Ni/N-doped graphene oxide for the determination of hydroquinone and catechol
    Liao, Lei
    Zhou, Pengcheng
    Xiao, Feng
    Tang, Weishan
    Zhao, Maojie
    Su, Rong
    He, Ping
    Yang, Dingming
    Bian, Liang
    Tang, Bin
    IONICS, 2023, 29 (04) : 1605 - 1615
  • [47] Electrochemical sensor based on Ni/N-doped graphene oxide for the determination of hydroquinone and catechol
    Lei Liao
    Pengcheng Zhou
    Feng Xiao
    Weishan Tang
    Maojie Zhao
    Rong Su
    Ping He
    Dingming Yang
    Liang Bian
    Bin Tang
    Ionics, 2023, 29 : 1605 - 1615
  • [48] Efficient Electrocatalyst for Glucose and Ethanol Based on Cu/Ni/N-Doped Graphene Hybrids
    Wu, Kong-Lin
    Jiang, Bin-Bin
    Cai, Ya-Miao
    Wei, Xian-Wen
    Li, Xiang-Zi
    Cheong, Weng-Chon
    CHEMELECTROCHEM, 2017, 4 (06): : 1419 - 1428
  • [49] Comparative Study of C3N- and Graphene-Supported Single-Atom Pt
    Yang, Bowen
    Fu, Zhaoming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (09): : 5731 - 5735
  • [50] Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism
    Wang, Bolin
    Yue, Yuxue
    Jin, Chunxiao
    Lu, Jinyue
    Wang, Saisai
    Yu, Lu
    Guo, Lingling
    Li, Rongrong
    Hu, Zhong-Ting
    Pan, Zhiyan
    Zhao, Jia
    Li, Xiaonian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 272