Electro-osmotic flow of electrolyte solutions of PEO in microfluidic channels

被引:21
|
作者
Moschopoulos, Pantelis [1 ]
Dimakopoulos, Yannis [1 ]
Tsamopoulos, John [1 ]
机构
[1] Univ Patras, Dept Chem Engn, Lab Fluid Mech & Rheol, Patras, Greece
关键词
Electro-osmosis; Electrolytic solution; Polymeric Depletion Layer (PDL); Microchannel; Polyethylene oxide; Chain scission criterion; GRADIENT-INDUCED MIGRATION; VISCOELASTIC FLUIDS; CAPILLARY-ELECTROPHORESIS; HIERARCHICAL MODEL; CHAIN CONFORMATION; POLYMER-SOLUTIONS; SURFACE; ELCTROOSMOSIS; EQUATION; DILUTE;
D O I
10.1016/j.jcis.2019.12.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hypothesis: We investigate if the shear-stress exerted on the wall of a glass microchannel can be a robust and accurate criterion for the safe electro-osmotic transfer of polyethylene oxide (PEO) chains dissolved in a NaCI aquatic solvent. To this end, a comprehensive multiscale formulation based on the Theological and electrochemical modeling of the PEO dynamics is proposed. Phenomena that occur in microscale, e.g., the migration of PEO to the core region of the channel and Polymeric Depletion Layer (PDL) formation, and in nanoscale, e.g., the development of an electric double layer on the glass surface and ionic steric effects, are included. Experimental arrangement: We study the electro-osmotic flow of PEO solutions (0.1-0.5%), flowing in a glass microchannel of rectangle shape, with dimensions of 300 i.tm in length and 75 am in height. We vary the externally applied electric field (300-500 V/cm), and the bulk ionic concentration (0.00110 mM). Findings: We find that all features of our formulation are indeed essential to reproduce the experimental data of Huang, Chen, Wong, Liow, Soft Matter, (2016) precisely. Although the PDL formation preserves the fragile nature of biopolymers, the dominant stress is the normal stress, and the critical value is at the PDL interface. A new design criterion for microdevices is proposed. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:381 / 393
页数:13
相关论文
共 50 条
  • [31] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    Di Fraia, S.
    Massarotti, N.
    Nithiarasu, P.
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (03)
  • [32] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    S. Di Fraia
    N. Massarotti
    P. Nithiarasu
    Microfluidics and Nanofluidics, 2017, 21
  • [33] Suppression of Electro-Osmotic Flow by Surface Roughness
    Messinger, R. J.
    Squires, T. M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (14)
  • [34] Exact solution of an electro-osmotic flow problem in a cylindrical channel of polymer electrolyte membranes
    Berg, Peter
    Ladipo, Kehinde
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2109): : 2663 - 2679
  • [35] Study of electro-osmotic flow in microfluldic devices
    Sabur, Romena
    Matin, M. A.
    2006 3RD IEEE/EMBS INTERNATIONAL SUMMER SCHOOL ON MEDICAL DEVICES AND BIOSENSORS, 2006, : 126 - +
  • [36] ELECTRO-OSMOTIC FLOW WITH FREE SURFACE IN NANOCHANNELS
    Joo, Sang W.
    Qian, Shizhi
    Jiang, Yingtao
    Cheney, Marcos A.
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 543 - 547
  • [37] Electro-osmotic nanofluid flow in a curved microchannel
    Narla, V. K.
    Tripathi, Dharmendra
    Beg, O. Anwar
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 544 - 558
  • [38] Ionic Origin of Electro-osmotic Flow Hysteresis
    Chun Yee Lim
    An Eng Lim
    Yee Cheong Lam
    Scientific Reports, 6
  • [39] Characterizing Electro-osmotic Flow in Parylene Microchannels
    Freire, Sergio L. S.
    Yang, Hao
    Luk, Vivienne N.
    O'Brien, Brendan
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2011, 50 (09) : 931 - 936
  • [40] Ionic Origin of Electro-osmotic Flow Hysteresis
    Lim, Chun Yee
    Lim, An Eng
    Lam, Yee Cheong
    SCIENTIFIC REPORTS, 2016, 6