A General Kinematics Model for Trajectory Planning of Upper Limb Exoskeleton Robots

被引:0
|
作者
Meng, Qiaoling [1 ,2 ,3 ]
Xie, Qiaolian [1 ,2 ,3 ]
Deng, Zhimeng [1 ,2 ,3 ]
Yu, Hongliu [1 ,2 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Inst Rehabil Engn & Technol, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Assist Devices, Shanghai, Peoples R China
[3] Minist Civil Affairs, Key Lab Neural Funct Informat & Rehabil Engn, Shanghai, Peoples R China
关键词
Trajectory planning; Kinematics model; Exoskeleton; Rehabilitation; REHABILITATION;
D O I
10.1007/978-3-030-27529-7_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory planning is a paramount requirement for upper limb rehabilitation robots because that can help stroke patients to receive rehabilitation training, especially in the implementation of activities of daily life. The patient-customized trajectory planning of the robot system is much more fit with human movement. This paper proposes an equivalent kinematics model of the upper limb, which covers all degrees of freedom of the upper limb. The trajectory planning based on this kinematics model is appropriate for upper limb exoskeleton rehabilitation or assistive robots. In addition, the proposed model has been experimentally validated on the prototype of an upper limb exoskeleton robot. The model of the exoskeleton is obtained by simplifying extra degrees of freedom of the kinematics model. And taking movement trajectory of the exoskeleton by cubic polynomial coincides with that by quintic polynomials, which proves that the approach can optimize the approach of trajectory planning. Furthermore, a significant reduction of trajectory generated operation can be achieved, with a consequent remarkable computational time-saving. Finally, results from taking things experiments with the exoskeleton are presented, which verify the usability of trajectory planning.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条
  • [31] Modeling and Kinematics Analysis of a Novel 5-DOF Upper Limb Exoskeleton Rehabilitation Robot
    Xu, Ningcun
    Peng, Xiwei
    Peng, Liang
    Hou, Zengguang
    Gui, Meijiang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1052 - 1057
  • [32] A Review on Lower Limb Rehabilitation Exoskeleton Robots
    Shi, Di
    Zhang, Wuxiang
    Zhang, Wei
    Ding, Xilun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2019, 32 (01)
  • [33] A Review on Lower Limb Rehabilitation Exoskeleton Robots
    Di Shi
    Wuxiang Zhang
    Wei Zhang
    Xilun Ding
    Chinese Journal of Mechanical Engineering, 2019, 32 (04) : 12 - 22
  • [34] A Review on Lower Limb Rehabilitation Exoskeleton Robots
    Di Shi
    Wuxiang Zhang
    Wei Zhang
    Xilun Ding
    Chinese Journal of Mechanical Engineering, 2019, 32
  • [35] Development of an armored upper limb exoskeleton
    Lopez-Mendez, Santiago
    Vladimir Martinez-Tejada, Hader
    Fidel Valencia-Garcia, Marco
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2020, (95): : 109 - 117
  • [36] Design and Modeling of an Upper Limb Exoskeleton
    Rosales, Y.
    Lopez, R.
    Rosales, I.
    Salazar, S.
    Lozano, R.
    2015 19TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2015, : 266 - 272
  • [37] Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation
    Liu, Quan
    Liu, Yang
    Li, Yi
    Zhu, Chang
    Meng, Wei
    Ai, Qingsong
    Xie, Sheng Q.
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [38] Design and Kinematics Analysis of a Lower Limb Exoskeleton Robot
    Wei, Xiaodong
    Yu, Hongliu
    Meng, Qingyun
    Hu, Bingshan
    MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE 2018, 2019, 527 : 131 - 139
  • [39] Mechanism Design and Kinematics Positive Solution of the Exoskeleton Upper Limb Rehabilitation Robot with 6-DOF
    Zhang Hui
    Wang Yong-xing
    Wang Sheng-ze
    ADVANCES IN MATERIAL SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING, 2013, 744 : 74 - 77
  • [40] A Human-Centered Kinematics Design Optimization of Upper Limb Rehabilitation Exoskeleton Based on Configuration Manifold
    Pei, Shuo
    Wang, Jiajia
    Yang, Yunlong
    Dong, Anyang
    Guo, Bingqi
    Guo, Junlong
    Yao, Yufeng
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2025, 6 : 282 - 293