Two Linear Regimes in Optical Conductivity of a Type-I Weyl Semimetal: The Case of Elemental Tellurium

被引:18
|
作者
Rodriguez, Diego [1 ]
Tsirlin, Alexander A. [2 ]
Biesner, Tobias [1 ]
Ueno, Teppei [3 ]
Takahashi, Takeshi [3 ]
Kobayashi, Kaya [3 ]
Dressel, Martin [1 ]
Uykur, Ece [1 ]
机构
[1] Univ Stuttgart, Phys Inst 1, D-70569 Stuttgart, Germany
[2] Augsburg Univ, Ctr Elect Correlat & Magnetism, Expt Phys 6, D-86159 Augsburg, Germany
[3] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
关键词
PRESSURE;
D O I
10.1103/PhysRevLett.124.136402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing high-pressure infrared spectroscopy we unveil the Weyl semimetal phase of elemental Te and its topological properties. The linear frequency dependence of the optical conductivity provides clear evidence for metallization of trigonal tellurium (Te-I) and the linear band dispersion above 3.0 GPa. This semimetallic Weyl phase can be tuned by increasing pressure further: a kink separates two linear regimes in the optical conductivity (at 3.7 GPa), a signature proposed for Type-II Weyl semimetals with tilted cones; this however reveals a different origin in trigonal tellurium. Our density-functional calculations do not reveal any significant tilting and suggest that Te-I remains in the Type-I Weyl phase, but with two valence bands in the vicinity of the Fermi level. Their interplay gives rise to the peculiar optical conductivity behavior with more than one linear regime. Pressure above 4.3 GPa stabilizes the more complex Te-II and Te-III polymorphs, which are robust metals.
引用
下载
收藏
页数:6
相关论文
共 34 条
  • [21] Intrinsic nonreciprocal reflection and violation of Kirchhoff's law of radiation in planar type-I magnetic Weyl semimetal surfaces
    Pajovic, Simo
    Tsurimaki, Yoichiro
    Qian, Xin
    Chen, Gang
    PHYSICAL REVIEW B, 2020, 102 (16)
  • [22] Dirac cone tilt on interband optical background of type-I and type-II Weyl semimetals
    Carbotte, J. P.
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [23] Possible manifestations of the chiral anomaly and evidence for a magnetic field induced topological phase transition in the type-I Weyl semimetal TaAs
    Zhang, Q. R.
    Zeng, B.
    Chiu, Y. C.
    Schonemann, R.
    Memaran, S.
    Zheng, W.
    Rhodes, D.
    Chen, K-W
    Besara, T.
    Sankar, R.
    Chou, F.
    McCandless, G. T.
    Chang, J. Y.
    Alidoust, N.
    Xu, S-Y
    Belopolski, I
    Hasan, M. Z.
    Balakirev, F. F.
    Balicas, L.
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [24] Ferromagnetic hybrid nodal loop and switchable type-I and type-II Weyl fermions in two dimensions
    He, Tingli
    Zhang, Xiaoming
    Liu, Ying
    Dai, Xuefang
    Liu, Guodong
    Yu, Zhi-Ming
    Yao, Yugui
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [25] Two-dimensional antiferromagnetic type-II Weyl fermions in monolayer ZnSb and type-I Weyl fermions and topological insulator in bilayer ZnSb
    Guo, Zhenzhou
    Liu, Ying
    Li, Shuyun
    Zhang, Xiaoming
    Liu, Guodong
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [26] Low-energy excitations in type-II Weyl semimetal Td-MoTe2 evidenced through optical conductivity
    Santos-Cottin, D.
    Martino, E.
    Le Mardele, F.
    Witteveen, C.
    von Rohr, F. O.
    Homes, C. C.
    Rukelj, Z.
    Akrap, Ana
    PHYSICAL REVIEW MATERIALS, 2020, 4 (02)
  • [27] Giant anomalous thermal Hall effect in tilted type-I magnetic Weyl semimetal Co3Sn2S2
    Karmakar, Abhirup Roy
    Nandy, S.
    Taraphder, A.
    Das, G. P.
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [28] A simulation chain for reflectometry and non-linear MHD: type-I ELM case
    Vicente, J.
    da Silva, F.
    Hoelzl, M.
    Conway, G. D.
    Heuraux, S.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (12):
  • [29] Linear Dichroism Conversion in Quasi-1D Weyl Semimetal (TaSe4)2I Crystal with Giant Optical Anisotropy
    Wei, Limei
    Zhang, Qing
    Wang, Shilei
    Ma, Yiran
    Wang, Ziming
    Xia, Fangfang
    Zhai, Tianyou
    Yuan, Hongtao
    Liu, Xiaohui
    Tao, Xutang
    Wang, Shanpeng
    ADVANCED OPTICAL MATERIALS, 2024,
  • [30] Optical conductivity of rattling phonons in type-I clathrate Ba8Ga16Ge30
    Mori, T.
    Goshima, S.
    Iwamoto, K.
    Kushibiki, S.
    Matsumoto, H.
    Toyota, N.
    Suekuni, K.
    Avila, M. A.
    Takabatake, T.
    Hasegawa, T.
    Ogita, N.
    Udagawa, M.
    PHYSICAL REVIEW B, 2009, 79 (21):