Two Linear Regimes in Optical Conductivity of a Type-I Weyl Semimetal: The Case of Elemental Tellurium

被引:18
|
作者
Rodriguez, Diego [1 ]
Tsirlin, Alexander A. [2 ]
Biesner, Tobias [1 ]
Ueno, Teppei [3 ]
Takahashi, Takeshi [3 ]
Kobayashi, Kaya [3 ]
Dressel, Martin [1 ]
Uykur, Ece [1 ]
机构
[1] Univ Stuttgart, Phys Inst 1, D-70569 Stuttgart, Germany
[2] Augsburg Univ, Ctr Elect Correlat & Magnetism, Expt Phys 6, D-86159 Augsburg, Germany
[3] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
关键词
PRESSURE;
D O I
10.1103/PhysRevLett.124.136402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing high-pressure infrared spectroscopy we unveil the Weyl semimetal phase of elemental Te and its topological properties. The linear frequency dependence of the optical conductivity provides clear evidence for metallization of trigonal tellurium (Te-I) and the linear band dispersion above 3.0 GPa. This semimetallic Weyl phase can be tuned by increasing pressure further: a kink separates two linear regimes in the optical conductivity (at 3.7 GPa), a signature proposed for Type-II Weyl semimetals with tilted cones; this however reveals a different origin in trigonal tellurium. Our density-functional calculations do not reveal any significant tilting and suggest that Te-I remains in the Type-I Weyl phase, but with two valence bands in the vicinity of the Fermi level. Their interplay gives rise to the peculiar optical conductivity behavior with more than one linear regime. Pressure above 4.3 GPa stabilizes the more complex Te-II and Te-III polymorphs, which are robust metals.
引用
收藏
页数:6
相关论文
共 34 条
  • [1] A type of robust superlattice type-I Weyl semimetal with four Weyl nodes
    Meng, Lijun
    Wu, Jiafang
    Zhong, Jianxin
    Roemer, Rudolf A.
    [J]. NANOSCALE, 2019, 11 (39) : 18358 - 18366
  • [2] Type-I antiferromagnetic Weyl semimetal InMnTi2
    Grassano, Davide
    Binci, Luca
    Marzari, Nicola
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [3] Chiral anomaly induced magnetoconductances in an irradiated type-I Weyl semimetal
    Sen, Rounak
    Kar, Satyaki
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (46)
  • [4] Two-dimensional Weyl semimetal with coexisting fully spin-polarized type-I and type-II Weyl points
    Meng, Weizhen
    Zhang, Xiaoming
    Liu, Ying
    Wang, Liying
    Dai, Xuefang
    Liu, Guodong
    [J]. APPLIED SURFACE SCIENCE, 2021, 540
  • [5] Magneto-optical conductivity in the type-I and type-II phases of Weyl/multi-Weyl semimetals
    Yadav, Shivam
    Sekh, Sajid
    Mandal, Ipsita
    [J]. PHYSICA B-CONDENSED MATTER, 2023, 656
  • [6] Effect of the type-I to type-II Weyl semimetal topological transition on superconductivity
    Li, Dingping
    Rosenstein, Baruch
    Shapiro, B. Ya.
    Shapiro, I.
    [J]. PHYSICAL REVIEW B, 2017, 95 (09)
  • [7] Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review
    Zheng, Hao
    Hasan, M. Zahid
    [J]. ADVANCES IN PHYSICS-X, 2018, 3 (01): : 568 - 590
  • [8] Ternary compound HfCuP: An excellent Weyl semimetal with the coexistence of type-I and type-II Weyl nodes
    Meng, Weizhen
    Zhang, Xiaoming
    He, Tingli
    Jin, Lei
    Dai, Xuefang
    Liu, Ying
    Liu, Guodong
    [J]. JOURNAL OF ADVANCED RESEARCH, 2020, 24 : 523 - 528
  • [9] Coexistence of Type-I and Type-II Weyl Points in the Weyl-Semimetal OsC2
    Zhang, Minping
    Yang, Zongxian
    Wang, Guangtao
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (06): : 3533 - 3538
  • [10] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
    Li, Wen-Chong
    Zhao, Ling-Xiao
    Zhao, Hai-Jun
    Chen, Gen-Fu
    Shi, Zhi-Xiang
    [J]. CHINESE PHYSICS B, 2022, 31 (05)