Multi-Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China

被引:17
|
作者
Luo, Min [1 ,2 ,3 ,4 ]
Meng, Fanhao [1 ,3 ]
Liu, Tie [1 ]
Duan, Yongchao [1 ,3 ]
Frankl, Amaury [2 ,5 ]
Kurban, Alishir [1 ,4 ]
De Maeyer, Philippe [2 ,6 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[2] Univ Ghent, Dept Geog, B-9000 Ghent, Belgium
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Sinobelgian Joint Lab Geoinformat, Urumqi 830011, Peoples R China
[5] Res Fund Flanders FWO, B-1000 Brussels, Belgium
[6] Sinobelgian Joint Lab Geoinformat, B-9000 Ghent, Belgium
关键词
general circulation models; climate change; hydrologic model; snow storage; Hotan River Basin; MULTISATELLITE PRECIPITATION ANALYSIS; HYDROLOGICAL IMPACT; DOWNSCALING METHODS; PASSIVE MICROWAVE; BIAS CORRECTION; SWAT MODEL; MIKE-SHE; RUNOFF; RAINFALL; PERFORMANCE;
D O I
10.3390/w9080584
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of global climate change threaten the availability of water resources worldwide and modify their tempo-spatial pattern. Properly quantifying the possible effects of climate change on water resources under different hydrological models is a great challenge in ungauged alpine regions. By using remote sensing data to support established models, this study aimed to reveal the effects of climate change using two models of hydrological processes including total water resources, peak flows, evapotranspiration, snowmelt and snow accumulation in the ungauged Hotan River Basin under future representative concentration pathway (RCP) scenarios. The results revealed that stream flow was much more sensitive to temperature variation than precipitation change and increased by 0.9-10.0% according to MIKE SHE or 6.5-10.5% according to SWAT. Increased evapotranspiration was similar for both models with a range of 7.6-31.3%. The snow-covered area shrank from 32.5% to 11.9% between the elevations of 4200-6400 m, respectively, and snow accumulation increased when the elevation exceeded 6400 m above sea level (asl). The results also suggested that the fully distributed and semi-distributed structures of these two models strongly influenced the responses to climate change. The study proposes a practical approach to assess the climate change effect in ungauged regions.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Climate change and water resources management in Tuwei river basin of Northwest China
    Wang Xiao-jun
    Zhang Jian-yun
    Wang Jian-hua
    He Rui-min
    ElMahdi, Amgad
    Liu Jin-hua
    Wang Xin-gong
    King, David
    Shahid, Shamsuddin
    [J]. MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2014, 19 (01) : 107 - 120
  • [32] The impacts of climate change on water resources in the Second Songhua River Basin, China
    Yu, J. S.
    Yao, X. L.
    Sun, W. C.
    Li, Z. J.
    [J]. 2ND INTERNATIONAL CONFERENCE ON AGRICULTURAL AND BIOLOGICAL SCIENCES (ABS 2016), 2016, 41
  • [33] Impacts of climate change on water resources in the Luan River basin in North China
    Zeng, Sidong
    Xia, Jun
    She, Dunxian
    Du, Hong
    Zhang, Liping
    [J]. WATER INTERNATIONAL, 2012, 37 (05) : 552 - 563
  • [34] Climate change and water resources management in Tuwei river basin of Northwest China
    Wang Xiao-jun
    Zhang Jian-yun
    Wang Jian-hua
    He Rui-min
    Amgad ElMahdi
    Liu Jin-hua
    Wang Xin-gong
    David King
    Shamsuddin Shahid
    [J]. Mitigation and Adaptation Strategies for Global Change, 2014, 19 : 107 - 120
  • [35] On the use of observations in assessment of multi-model climate ensemble
    Xu, Donghui
    Ivanov, Valeriy Y.
    Kim, Jongho
    Fatichi, Simone
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (11-12) : 1923 - 1937
  • [36] Multi-Model Ensemble Machine Learning Approaches to Project Climatic Scenarios in a River Basin in the Pyrenees
    Bilbao-Barrenetxea, Nerea
    Martinez-Espana, Raquel
    Jimeno-Saez, Patricia
    Faria, Sergio Henrique
    Senent-Aparicio, Javier
    [J]. EARTH SYSTEMS AND ENVIRONMENT, 2024,
  • [37] Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes
    Tegegne, Getachew
    Melesse, Assefa M.
    Worqlul, Abeyou W.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 704
  • [38] An assessment of a multi-model ensemble of decadal climate predictions
    Bellucci, A.
    Haarsma, R.
    Gualdi, S.
    Athanasiadis, P. J.
    Caian, M.
    Cassou, C.
    Fernandez, E.
    Germe, A.
    Jungclaus, J.
    Kroeger, J.
    Matei, D.
    Mueller, W.
    Pohlmann, H.
    Salas y Melia, D.
    Sanchez, E.
    Smith, D.
    Terray, L.
    Wyser, K.
    Yang, S.
    [J]. CLIMATE DYNAMICS, 2015, 44 (9-10) : 2787 - 2806
  • [39] On the use of observations in assessment of multi-model climate ensemble
    Donghui Xu
    Valeriy Y. Ivanov
    Jongho Kim
    Simone Fatichi
    [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1923 - 1937
  • [40] An assessment of a multi-model ensemble of decadal climate predictions
    A. Bellucci
    R. Haarsma
    S. Gualdi
    P. J. Athanasiadis
    M. Caian
    C. Cassou
    E. Fernandez
    A. Germe
    J. Jungclaus
    J. Kröger
    D. Matei
    W. Müller
    H. Pohlmann
    D. Salas y Melia
    E. Sanchez
    D. Smith
    L. Terray
    K. Wyser
    S. Yang
    [J]. Climate Dynamics, 2015, 44 : 2787 - 2806