The numerical r-matrix of the elliptic Calogero-Moser model

被引:0
|
作者
Hou, BY [1 ]
Yang, WL [1 ]
机构
[1] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we construct a new Lax operator for the elliptic Calogero-Moser model with N = 2. The r-matrix structure of this Lax operator is also studied and we find that the r-matrix oi this new Lax operator is numerical which does not depend upon the dynamical variable. The relation between our Lax operator and the Law operator given by Krichever is also obtained.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [31] Quantum integrability of the deformed elliptic Calogero-Moser problem
    Khodarinova, LA
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (03)
  • [32] Algebraic Spectral Relations for Elliptic Quantum Calogero-Moser Problems
    L. A. Khodarinova
    I. A. Prikhodsky
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 263 - 268
  • [33] Separation of variables for the A3 elliptic Calogero-Moser system
    Mangazeev, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19): : 4183 - 4195
  • [34] On elliptic Calogero-Moser systems for complex crystallographic reflection groups
    Etingof, Pavel
    Felder, Giovanni
    Ma, Xiaoguang
    Veselov, Alexander
    JOURNAL OF ALGEBRA, 2011, 329 (01) : 107 - 129
  • [35] Real-Normalized Differentials and the Elliptic Calogero-Moser System
    Grushevsky, Samuel
    Krichever, Igor
    COMPLEX GEOMETRY AND DYNAMICS, 2015, : 123 - 137
  • [36] THE QUANTUM CALOGERO-MOSER MODEL - ALGEBRAIC STRUCTURES
    UJINO, H
    WADATI, M
    HIKAMI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (09) : 3035 - 3043
  • [37] Calogero-Moser models. III - Elliptic potentials and twisting
    Bordner, AJ
    Sasaki, R
    PROGRESS OF THEORETICAL PHYSICS, 1999, 101 (04): : 799 - 829
  • [38] Quantum elliptic Calogero-Moser systems from gauge origami
    Chen, Heng-Yu
    Kimura, Taro
    Lee, Norton
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [39] Quantum elliptic Calogero-Moser systems from gauge origami
    Heng-Yu Chen
    Taro Kimura
    Norton Lee
    Journal of High Energy Physics, 2020
  • [40] Direct proof of integrability of Calogero-Moser model
    Gonera, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4759 - 4765