A note on equilibrium problems with properly quasimonotone bifunctions

被引:75
|
作者
Bianchi, M
Pini, R
机构
[1] Univ Cattolica Sacro Cuore, Ist Econometria & Matemat Applicaz Econ Finanziar, I-20123 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Metodi Quantitat Econ, I-20126 Milan, Italy
关键词
equilibrium problem; proper quasimonotone bifunctions; KKM maps; generalized monotonicity;
D O I
10.1023/A:1011234525151
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider some well-known equilibrium problems and their duals in a topological Hausdorff vector space X for a bifunction F defined on K x K,where K is a convex subset of X. Some necessary conditions are investigated, proving different results depending on the behaviour of F on the diagonal set. The concept of proper quasimonotonicity for bifunctions is defined, and the relationship with generalized monotonicity is investigated. The main result proves that the condition of proper quasimonotonicity is sharp in order to solve the dual equilibrium problem on every convex set.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [31] Existence results for φ-quasimonotone equilibrium problems in convex metric spaces
    Jafari, S.
    Farajzadeh, A. P.
    Moradi, S.
    Khanh, P. Q.
    [J]. OPTIMIZATION, 2017, 66 (03) : 293 - 310
  • [32] Mixed equilibrium problems with Z*-bifunctions and least element problems in Banach lattices
    Hu, Rong
    Fang, Ya Ping
    [J]. OPTIMIZATION LETTERS, 2013, 7 (05) : 933 - 947
  • [33] Correction to: Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization
    M. Bianchi
    G. Kassay
    R. Pini
    [J]. Journal of Global Optimization, 2022, 84 : 525 - 526
  • [34] An Inexact Proximal Method with Proximal Distances for Quasimonotone Equilibrium Problems
    Mallma Ramirez L.
    Papa Quiroz E.A.
    Oliveira P.R.
    [J]. Journal of the Operations Research Society of China, 2017, 5 (4) : 545 - 561
  • [35] Generalized Vector Equilibrium Problems for Pseudomonotone Multivalued Bifunctions1
    M. Fakhar
    J. Zafarani
    [J]. Journal of Optimization Theory and Applications, 2005, 126 : 109 - 124
  • [36] Comments on the Solutions Set of Equilibrium Problems Governed by Topological Pseudomonotone Bifunctions
    Bogdan, Marcel
    [J]. 15TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING, 2022, 386 : 696 - 703
  • [37] A note on pseudolinearity in terms of bifunctions
    Lalitha, C. S.
    Mehta, Monika
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (01) : 83 - 91
  • [38] Hybrid projection methods for equilibrium problems with non-Lipschitz type bifunctions
    Dang Van Hieu
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 4065 - 4079
  • [39] A note on the combination of equilibrium problems
    Nguyen Thi Thanh Ha
    Tran Thi Huyen Thanh
    Nguyen Ngoc Hai
    Hy Duc Manh
    Bui Van Dinh
    [J]. Mathematical Methods of Operations Research, 2020, 91 : 311 - 323
  • [40] A note on the combination of equilibrium problems
    Nguyen Thi Thanh Ha
    Tran Thi Huyen Thanh
    Nguyen Ngoc Hai
    Hy Duc Manh
    Bui Van Dinh
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (02) : 311 - 323