Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites

被引:59
|
作者
Zhang, Jiawei [1 ]
Zeng, Gangming [1 ]
Chen, Lanlan [2 ]
Lai, Wenchuan [1 ]
Yuan, Yuliang [1 ]
Lu, Yangfan [3 ]
Ma, Chao [1 ]
Zhang, Wenhua [2 ]
Huang, Hongwen [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Adv Catalyt Engineer Res Ctr, Minist Educ, Changsha 410082, Peoples R China
[2] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys,Chinese Acad Sci, Hefei 230026, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; single atom catalysts; coordination structure; product selectivity; active sites shift; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; FORMATE; ELECTRODES; CONVERSION; CENTERS;
D O I
10.1007/s12274-022-4177-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modulating the local coordination structure of metal single-atom catalysts (SACs) is extensively employed to tune the catalytic activity, but rarely involved in regulating the reaction pathway which fundamentally determines the product selectivity. Herein, we report that the product selectivity of electrochemical CO2 reduction (CO2RR) on the single-atom indium-NxC4-x (1 <= x <= 4) catalysts could be tuned from formate to CO by varying the carbon and nitrogen occupations in the first coordination sphere. Surprisingly, the optimal In SAC showed great promise for CO production with the maximum Faradic efficiency of 97%, greatly different from the reported In-based catalysts where the formate is the dominant product. Combined experimental verifications and theoretical simulations reveal that the selectivity switch from formate to CO on In SACs originates from active sites shift from indium center to the indium-adjacent carbon atom, where the indium site favors formate formation and the indium-adjacent carbon site prefers the CO pathway. The present work suggests the active sites in metal SACs may shift from the widely accepted metal center to surrounding carbon atoms, thereby offering a new implication to revisit the active sites for metal SACs.
引用
收藏
页码:4014 / 4022
页数:9
相关论文
共 50 条
  • [21] Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction
    Wang, Yu
    You, Liming
    Zhou, Kun
    CHEMICAL SCIENCE, 2021, 12 (42) : 14065 - 14073
  • [22] First-Principles Insights into the Selectivity of CO2 Electroreduction over Heterogeneous Single-Atom Catalysts
    Liu, Tianyang
    Jing, Yu
    Li, Yafei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (23): : 6216 - 6221
  • [23] Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction
    Wang, Xingpu
    Ding, Shaosong
    Yue, Tong
    Zhu, Ying
    Fang, Mingwei
    Li, Xueyan
    Xiao, Guozheng
    Dai, Liming
    NANO ENERGY, 2021, 82
  • [24] Asymmetric coordinated single-atom Pd sites for high performance CO2 electroreduction and Zn-CO2 battery
    Li, Jiani
    Chen, Li-Wei
    Hao, Yu-Chen
    Yuan, Man
    Lv, Jianning
    Dong, Anwang
    Li, Shuai
    Gu, Hongfei
    Yin, An-Xiang
    Chen, Wenxing
    Li, Pengfei
    Wang, Bo
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [25] Mechanistic study of hydrogen reaction on single-atom catalyst
    Liao, Chen-Cheng
    Tsai, Ming-Kang
    Sasaki, Kotaro
    Chen, Wei-Fu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [26] Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances
    Chen, Chang
    Li, Jiazhan
    Tan, Xin
    Zhang, Yu
    Li, Yifan
    He, Chang
    Xu, Zhiyuan
    Zhang, Chao
    Chen, Chen
    EES CATALYSIS, 2024, 2 (01): : 71 - 93
  • [27] Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
    Back, Seoin
    Lim, Juhyung
    Kim, Na-Young
    Kim, Yong-Hyun
    Jung, Yousung
    CHEMICAL SCIENCE, 2017, 8 (02) : 1090 - 1096
  • [28] Bi/Zn Dual Single-Atom Catalysts for Electroreduction of CO2 to Syngas
    Meng, Lingzhe
    Zhang, Erhuan
    Peng, Haoyu
    Wang, Yu
    Wang, Dingsheng
    Rong, Hongpan
    Zhang, Jiatao
    CHEMCATCHEM, 2022, 14 (07)
  • [29] Mechanism insights on single-atom catalysts for CO2 conversion
    Wu, Qing
    Wu, Chongchong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4876 - 4906
  • [30] Coordination environment engineering on nickel single-atom catalysts for CO2 electroreduction
    Ma, Mengbo
    Li, Fuhua
    Tang, Qing
    NANOSCALE, 2021, 13 (45) : 19133 - 19143