Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites

被引:59
|
作者
Zhang, Jiawei [1 ]
Zeng, Gangming [1 ]
Chen, Lanlan [2 ]
Lai, Wenchuan [1 ]
Yuan, Yuliang [1 ]
Lu, Yangfan [3 ]
Ma, Chao [1 ]
Zhang, Wenhua [2 ]
Huang, Hongwen [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Adv Catalyt Engineer Res Ctr, Minist Educ, Changsha 410082, Peoples R China
[2] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys,Chinese Acad Sci, Hefei 230026, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; single atom catalysts; coordination structure; product selectivity; active sites shift; ELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; FORMATE; ELECTRODES; CONVERSION; CENTERS;
D O I
10.1007/s12274-022-4177-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modulating the local coordination structure of metal single-atom catalysts (SACs) is extensively employed to tune the catalytic activity, but rarely involved in regulating the reaction pathway which fundamentally determines the product selectivity. Herein, we report that the product selectivity of electrochemical CO2 reduction (CO2RR) on the single-atom indium-NxC4-x (1 <= x <= 4) catalysts could be tuned from formate to CO by varying the carbon and nitrogen occupations in the first coordination sphere. Surprisingly, the optimal In SAC showed great promise for CO production with the maximum Faradic efficiency of 97%, greatly different from the reported In-based catalysts where the formate is the dominant product. Combined experimental verifications and theoretical simulations reveal that the selectivity switch from formate to CO on In SACs originates from active sites shift from indium center to the indium-adjacent carbon atom, where the indium site favors formate formation and the indium-adjacent carbon site prefers the CO pathway. The present work suggests the active sites in metal SACs may shift from the widely accepted metal center to surrounding carbon atoms, thereby offering a new implication to revisit the active sites for metal SACs.
引用
收藏
页码:4014 / 4022
页数:9
相关论文
共 50 条
  • [1] Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites
    Jiawei Zhang
    Gangming Zeng
    Lanlan Chen
    Wenchuan Lai
    Yuliang Yuan
    Yangfan Lu
    Chao Ma
    Wenhua Zhang
    Hongwen Huang
    Nano Research, 2022, 15 : 4014 - 4022
  • [2] Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst
    He, Qun
    Lee, Ji Hoon
    Liu, Daobin
    Liu, Yumeng
    Lin, Zhexi
    Xie, Zhenhua
    Hwang, Sooyeon
    Kattel, Shyam
    Song, Li
    Chen, Jingguang G.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [3] Boosting CO2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure
    Wu, Yahui
    Chen, Chunjun
    Yan, Xupeng
    Sun, Xiaofu
    Zhu, Qinggong
    Li, Pengsong
    Li, Yiming
    Liu, Shoujie
    Ma, Jingyuan
    Huang, Yuying
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (38) : 20803 - 20810
  • [4] Structural rule of heteroatom-modified single-atom catalysts for the CO2 electroreduction reaction
    Sui, Xinyuan
    Yuan, Haiyang
    Hou, Yu
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 13 (01) : 638 - 644
  • [5] Transient Dangling Active Sites of Fe(III)-N-C Single-Atom Catalyst for Efficient Electrochemical CO2 Reduction Reaction
    Qiu, Yun-Ze
    Liu, Xiao-Meng
    Li, Wenying
    Li, Jun
    Xiao, Hai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [6] CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment
    Gao, Haixia
    Liu, Kang
    Luo, Tao
    Chen, Yu
    Hu, Junhua
    Fu, Junwei
    Liu, Min
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (03) : 832 - 838
  • [7] Boosting CO2 electroreduction to CO with abundant nickel single atom active sites†
    Wang, Wei-juan
    Cao, Changsheng
    Wang, Kaiwen
    Zhou, Tianhua
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (10) : 2542 - 2548
  • [8] Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst
    Liu, Song
    Yang, Hong Bin
    Hung, Sung-Fu
    Ding, Jie
    Cai, Weizheng
    Liu, Linghui
    Gao, Jiajian
    Li, Xuning
    Ren, Xinyi
    Kuang, Zhichong
    Huang, Yanqiang
    Zhang, Tao
    Liu, Bin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (02) : 798 - 803
  • [9] Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO2 Electroreduction Reaction: A Review
    Ji, Youan
    Du, Juan
    Chen, Aibing
    Gao, Xueqing
    Peng, Mengke
    CHEMSUSCHEM, 2025, 18 (03)
  • [10] Recent progress on single-atom catalysts for CO2 electroreduction
    Liu, Juan
    Cai, Yanming
    Song, Rongbin
    Ding, Shichao
    Lyu, Zhaoyuan
    Chang, Yu-Chung
    Tian, Hangyu
    Zhang, Xiao
    Du, Dan
    Zhu, Wenlei
    Zhou, Yang
    Lin, Yuehe
    MATERIALS TODAY, 2021, 48 : 95 - 114