Dual-Branch Feature Fusion Network for Salient Object Detection

被引:0
|
作者
Song, Zhehan [1 ]
Xu, Zhihai [1 ]
Wang, Jing [2 ]
Feng, Huajun [1 ]
Li, Qi [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[2] Sci & Technol Opt Radiat Lab, Beijing 100854, Peoples R China
关键词
salient object detection; dual-branch feature fusion network; wide-field optical system;
D O I
10.3390/photonics9010044
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Proper features matter for salient object detection. Existing methods mainly focus on designing a sophisticated structure to incorporate multi-level features and filter out cluttered features. We present the dual-branch feature fusion network (DBFFNet), a simple effective framework mainly composed of three modules: global information perception module, local information concatenation module and refinement fusion module. The local information of a salient object is extracted from the local information concatenation module. The global information perception module exploits the U-Net structure to transmit the global information layer by layer. By employing the refinement fusion module, our approach is able to refine features from two branches and detect salient objects with final details without any post-processing. Experiments on standard benchmarks demonstrate that our method outperforms almost all of the state-of-the-art methods in terms of accuracy, and achieves the best performance in terms of speed under fair settings. Moreover, we design a wide-field optical system and combine with DBFFNet to achieve salient object detection with large field of view.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Feature Recalibration Network for Salient Object Detection
    Tan, Zhenshan
    Gu, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 64 - 75
  • [42] DEFNet: Dual-Branch Enhanced Feature Fusion Network for RGB-T Crowd Counting
    Zhou, Wujie
    Pan, Yi
    Lei, Jingsheng
    Ye, Lv
    Yu, Lu
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24540 - 24549
  • [43] A dual-branch feature fusion neural network for fish image fine-grained recognition
    Geng, Xu
    Gao, Jinxiong
    Zhang, Yonghui
    Wang, Rong
    [J]. VISUAL COMPUTER, 2024, 40 (10): : 6883 - 6896
  • [44] A dual-branch multi-feature deep fusion network framework for hyperspectral image classification
    Liu, Linfeng
    Zhang, Chengcai
    Luo, Weiran
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18692 - 18715
  • [45] Text Detection on Industrial Barrel Label with Convolutional Attention and Dual-Branch Feature Network
    School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, Jilin
    130022, China
    [J]. IEEJ Trans. Electr. Electron. Eng.,
  • [46] IBNet: Interactive Branch Network for salient object detection
    Fang, Xian
    Zhu, Jinchao
    Zhang, Ruixun
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2021, 465 (465) : 574 - 583
  • [47] DBFNet: A Dual-Branch Fusion Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    [J]. REMOTE SENSING, 2023, 15 (05)
  • [48] DFFNet: A Rainfall Nowcasting Model Based on Dual-Branch Feature Fusion
    Liu, Shuxian
    Liu, Yulong
    Zheng, Jiong
    Liao, Yuanyuan
    Zheng, Guohong
    Zhang, Yongjun
    [J]. ELECTRONICS, 2024, 13 (14)
  • [49] Parallel Dual-Branch Fusion Network for Epileptic Seizure Prediction
    Ma, Hongcheng
    Wu, Yajing
    Tang, Yongqiang
    Chen, Rui
    Xu, Tao
    Zhang, Wensheng
    [J]. Computers in Biology and Medicine, 2024, 176
  • [50] Dual-branch network with memory for video anomaly detection
    Dicong Wang
    Qinghua Hu
    Kaijun Wu
    [J]. Multimedia Systems, 2023, 29 : 247 - 259