WEAK ESTIMATES FOR THE MAXIMAL AND RIESZ POTENTIAL OPERATORS ON NON-HOMOGENEOUS CENTRAL MORREY TYPE SPACES IN L1 OVER METRIC MEASURE SPACES

被引:1
|
作者
Matsuoka, Katsuo [1 ]
Mizuta, Yoshihiro [2 ]
Shimomura, Tetsu [3 ]
机构
[1] Nihon Univ, Coll Econ, Chiyoda Ku, 1-3-2 Misaki Cho, Tokyo 1018360, Japan
[2] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398521, Japan
[3] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
Non-homogeneous central Morrey type space; metric measure space; maximal function; Riesz potentials; Sobolev's inequality; duality; VARIABLE EXPONENT; BOUNDEDNESS; DUALITY; THEOREM; GRAND;
D O I
10.5186/aasfm.2020.4561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a metric measure space (X, d, mu), our first aim in this paper is to discuss the weak estimates for the maximal and Riesz potential operators in the non-homogeneous central Morrey type space M-1,M-q,M-a(X) (about x(0) is an element of X) of all measurable functions f on X satisfying parallel to f parallel to(M1,q,a(X)) = (integral(infinity)(1) (r(-a)parallel to f parallel to(L1(B(x0,r))))(q) dr/r)(1/q) < infinity for a >= 0 and 0 < q < infinity; when q = infinity, we apply a necessary modification. To do this, we consider the family WM phi,q,a (X) of all measurable functions f is an element of L-loc(1)(X) such that parallel to f parallel to(WM phi,q,a(X)) = sup(lambda>0) lambda (integral(infinity)(1) (r(-q)phi(-1) (integral(B(x0,r)) chi(Ef(lambda)) (x) d mu(x)))(q) dr/r)(1/q) < infinity where phi is a general function satisfying certain conditions and chi(Ef (lambda)) denotes the characteristic function of E-f(lambda) = {x is an element of X : vertical bar f (x)vertical bar > lambda}. In connection with M-1,M-q,M-a(X), we treat the complementary space N-infinity,N-q,N-a(X) of all measurable functions f on X satisfying parallel to f parallel to(N infinity,q,a(X)) = parallel to f parallel to(L infinity(B(x0,2))) + (integral(infinity)(1) (r(a)parallel to f parallel to(L1(X\B(x0,r))))(q) dr/r)(1/q) < infinity.
引用
收藏
页码:1187 / 1207
页数:21
相关论文
共 50 条
  • [31] Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    HOKKAIDO MATHEMATICAL JOURNAL, 2015, 44 (02) : 185 - 201
  • [32] Spectral multipliers via resolvent type estimates on non-homogeneous metric measure spaces
    Peng Chen
    Adam Sikora
    Lixin Yan
    Mathematische Zeitschrift, 2020, 294 : 555 - 570
  • [33] Spectral multipliers via resolvent type estimates on non-homogeneous metric measure spaces
    Chen, Peng
    Sikora, Adam
    Yan, Lixin
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (1-2) : 555 - 570
  • [34] Commutators of Fractional Maximal Functions on Orlicz Spaces over Non-Homogeneous Metric Spaces
    Guanghui LU
    Xuemei LI
    Journal of Mathematical Research with Applications, 2024, 44 (06) : 782 - 794
  • [35] Multilinear fractional integral operators on non-homogeneous metric measure spaces
    Huajun Gong
    Rulong Xie
    Chen Xu
    Journal of Inequalities and Applications, 2016
  • [36] Multilinear fractional integral operators on non-homogeneous metric measure spaces
    Gong, Huajun
    Xie, Rulong
    Xu, Chen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [37] AN INTERPOLATION THEOREM FOR SUBLINEAR OPERATORS ON NON-HOMOGENEOUS METRIC MEASURE SPACES
    Lin, Haibo
    Yang, Dongyong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02) : 168 - 179
  • [38] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    ScienceChina(Mathematics), 2015, 58 (02) : 309 - 388
  • [39] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388
  • [40] Boundedness of Maximal Operators and Sobolev's Inequality on Non-Homogeneous Central Musielak-Orlicz-Morrey Spaces
    Ohno, Takao
    Shimomura, Tetsu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3341 - 3357