Computer Vision-Based Architecture for IoMT Using Deep Learning

被引:3
|
作者
Al-qudah, Rabiah [1 ]
Aloqaily, Moayad [1 ]
Karray, Fakhri [1 ]
机构
[1] Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
关键词
Triage; Edge; IoMT; Deep Learning; Computer Vision; TIME;
D O I
10.1109/IWCMC55113.2022.9825279
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of Emergency Department (ED) overcrowding is a worldwide public health issue that has several side effects, such as overworked medical staff, increased infections, and high mortality rates among patients. The process of conducting initial medical assessment and sorting for ED patients without the need for direct contact between medical staff and patients is called "remote triage". In this work, we tackle the automation of this process. Three fully automated computer vision-based architectures for IoMT are proposed, namely home-based, portable and smart triage road units. The proposed methods utilize state-of-the-art deep learning architectures to automate the remote triage process. The utilized deep architectures are lightweight, thus, mobile-friendly, and capable of assigning triage scores to a broad spectrum of medical conditions. We furthermore formulate patients' ED wait time mathematically. We setup all architectures to consider EDs at a regional level in order to facilitate making a convenient ED choice for patients. Moreover, a novel ED selection criteria that considers the ED distance and the expected wait time is proposed in order to minimize the wait time and commuting distance for patients. Our experiments show an improvement in the quality and duration of patients' wait time throughout the triage process. Additionally, our experiments show that the proposed methods achieve accurate triage results with an average macro F-score of 97.8% with the capability of providing triage to 98 patients/second compared to the non-automated current approach followed in EDs which takes 15 minutes/patient in the best case.
引用
收藏
页码:931 / 936
页数:6
相关论文
共 50 条
  • [21] Deep Learning Era for Computer Vision-Based Eye Gaze Tracking: An Intensive Model
    Logeshwari, R.
    Malathi, T.
    Prabu, R. Thandaiah
    Prasath, P.
    Gandhi, C. Rajive
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (05)
  • [22] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [23] Jump power assessment using computer vision-based deep learning motion analysis to detect possible sarcopenia
    Cho, Sang Wouk
    Park, Eun-young
    Park, Na-rae
    Han, Sookyeong
    Rhee, Yumie
    Hong, Namki
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 : 387 - 387
  • [24] Vision-based Deep Reinforcement Learning to Control a Manipulator
    Kim, Wonchul
    Kim, Taewan
    Lee, Jonggu
    Kim, H. Jin
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1046 - 1050
  • [25] Adaptive Deep Learning for a Vision-based Fall Detection
    Doulamis, Anastasios
    Doulamis, Nikolaos
    11TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2018), 2018, : 558 - 565
  • [26] Deep Learning and Vision-Based Early Drowning Detection
    Shatnawi, Maad
    Albreiki, Frdoos
    Alkhoori, Ashwaq
    Alhebshi, Mariam
    INFORMATION, 2023, 14 (01)
  • [27] Vision-Based Robot Path Planning with Deep Learning
    Wu, Ping
    Cao, Yang
    He, Yuqing
    Li, Decai
    COMPUTER VISION SYSTEMS, ICVS 2017, 2017, 10528 : 101 - 111
  • [28] A Vision-based Robotic Grasping System Using Deep Learning for Garbage Sorting
    Chen Zhihong
    Zou Hebin
    Wang Yanbo
    Liang Binyan
    Liao Yu
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11223 - 11226
  • [29] Automated Vision-Based Crack Detection on Concrete Surfaces Using Deep Learning
    Rajadurai, Rajagopalan-Sam
    Kang, Su-Tae
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [30] Vision-based concrete crack detection using deep learning-based models
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2389 - 2403