Computer Vision-Based Architecture for IoMT Using Deep Learning

被引:3
|
作者
Al-qudah, Rabiah [1 ]
Aloqaily, Moayad [1 ]
Karray, Fakhri [1 ]
机构
[1] Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
关键词
Triage; Edge; IoMT; Deep Learning; Computer Vision; TIME;
D O I
10.1109/IWCMC55113.2022.9825279
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of Emergency Department (ED) overcrowding is a worldwide public health issue that has several side effects, such as overworked medical staff, increased infections, and high mortality rates among patients. The process of conducting initial medical assessment and sorting for ED patients without the need for direct contact between medical staff and patients is called "remote triage". In this work, we tackle the automation of this process. Three fully automated computer vision-based architectures for IoMT are proposed, namely home-based, portable and smart triage road units. The proposed methods utilize state-of-the-art deep learning architectures to automate the remote triage process. The utilized deep architectures are lightweight, thus, mobile-friendly, and capable of assigning triage scores to a broad spectrum of medical conditions. We furthermore formulate patients' ED wait time mathematically. We setup all architectures to consider EDs at a regional level in order to facilitate making a convenient ED choice for patients. Moreover, a novel ED selection criteria that considers the ED distance and the expected wait time is proposed in order to minimize the wait time and commuting distance for patients. Our experiments show an improvement in the quality and duration of patients' wait time throughout the triage process. Additionally, our experiments show that the proposed methods achieve accurate triage results with an average macro F-score of 97.8% with the capability of providing triage to 98 patients/second compared to the non-automated current approach followed in EDs which takes 15 minutes/patient in the best case.
引用
收藏
页码:931 / 936
页数:6
相关论文
共 50 条
  • [1] Deep Learning Architecture for Computer Vision-based Structural Defect Detection
    Ruoyu Yang
    Shubhendu Kumar Singh
    Mostafa Tavakkoli
    M. Amin Karami
    Rahul Rai
    Applied Intelligence, 2023, 53 : 22850 - 22862
  • [2] Deep Learning Architecture for Computer Vision-based Structural Defect Detection
    Yang, Ruoyu
    Singh, Shubhendu Kumar
    Tavakkoli, Mostafa
    Karami, M. Amin
    Rai, Rahul
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22850 - 22862
  • [3] A Computer Vision-Based Approach for Tick Identification Using Deep Learning Models
    Luo, Chu-Yuan
    Pearson, Patrick
    Xu, Guang
    Rich, Stephen M.
    INSECTS, 2022, 13 (02)
  • [4] Computer vision-based video signal fusion using deep learning architectures
    Ghyabi, Mehrdad
    Lattanzi, David
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2025,
  • [5] CNN-LSTM deep learning architecture for computer vision-based modal frequency detection
    Yang, Ruoyu
    Singh, Shubhendu Kumar
    Tavakkoli, Mostafa
    Amiri, Nikta
    Yang, Yongchao
    Karami, M. Amin
    Rai, Rahul
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 144 (144)
  • [6] Deep Fake Detection Using Computer Vision-Based Deep Neural Network with Pairwise Learning
    Ram, R. Saravana
    Kumar, M. Vinoth
    Al-shami, Tareq M.
    Masud, Mehedi
    Aljuaid, Hanan
    Abouhawwash, Mohamed
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02): : 2449 - 2462
  • [7] Vision-based texture and color analysis of waterbody images using computer vision and deep learning techniques
    Erfani, Seyed Mohammad Hassan
    Goharian, Erfan
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (03) : 835 - 850
  • [8] Vision-based Navigation Using Deep Reinforcement Learning
    Kulhanek, Jonas
    Derner, Erik
    de Bruin, Tim
    Babuska, Robert
    2019 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2019,
  • [9] Vision-based Obstacle Avoidance Using Deep Learning
    Gaya, Joel O.
    Goncalves, Lucas T.
    Duarte, Amanda C.
    Zanchetta, Breno
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 7 - 12
  • [10] Deep Learning for Accurate Corner Detection in Computer Vision-Based Inspection
    Ercan, M. Fikret
    Ben Wang, Ricky
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT II, 2021, 12950 : 45 - 54