Segmentation of retinal layers in volumetric OCT scans of normal and glaucomatous subjects

被引:3
|
作者
Vermeer, K. A. [1 ]
van der Schoot, J. [1 ]
Lemij, H. G. [1 ]
de Boer, J. F. [1 ]
机构
[1] Rotterdam Eye Hosp, Rotterdam, Netherlands
来源
OPHTHALMIC TECHNOLOGIES XXI | 2011年 / 7885卷
关键词
Optical Coherence Tomography; segmentation; image processing; computer-aided diagnosis; glaucoma;
D O I
10.1117/12.873698
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Volumetric scans of current SD-OCT devices can contain on the order of 50 million pixels. Due to this size and because quantitative measurements in these scans are often needed, automatic segmentation of these scans is required. In this paper, a fully automatic retinal layer segmentation algorithm is presented, based on pixel-classification. First, each pixel is augmented by intensity and gradient data from a local neighborhood, thereby producing a feature vector. These feature vectors are used as inputs for a support vector machine, which classifies each pixel as above or below each interface. Finally, a level set method regularizes the result, producing a smooth surface within the three-dimensional space. Volumetric scans of 10 healthy and 8 glaucomatous subjects were acquired with a Spectralis OCT. Each scan consisted of 193 B-scans, 512 A-lines per B-scan (5 times averaging) and 496 pixels per A-line. Two B-scans of each healthy subject were manually segmented and used to train the support vector machine. One B-scan of each glaucomatous subjects was manually segmented and used only for performance assessment of the algorithm. The root-mean-square errors for the normal eyes were 3.7, 15.4, 15.0 and 5.5 mu m for the vitreous/retinal nerve fiber layer (RNFL), RNFL/ganglion cell layer, inner plexiform layer/inner nuclear layer and retinal pigment epithelium/choroid interfaces, respectively, and 5.5, 11.5, 9.5 and 6.2 mu m for the glaucomatous eyes. Based on the segmentation, retinal and RNFL thickness maps and blood vessel masks were produced.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] RETINAL LAYERS OCT SCANS 3-D SEGMENTATION
    Sleman, Ahmed A.
    Soliman, Ahmed
    Ghazal, Mohammed
    Sandhu, Harpal
    Schaal, Shlomit
    Elmaghraby, Adel
    El-Baz, Ayman
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [2] Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients
    Mayer, Markus A.
    Hornegger, Joachim
    Mardin, Christian Y.
    Tornow, Ralf P.
    BIOMEDICAL OPTICS EXPRESS, 2010, 1 (05): : 1358 - 1383
  • [3] A NOVEL AUTOMATIC SEGMENTATION OF HEALTHY AND DISEASED RETINAL LAYERS FROM OCT SCANS
    ElTanboly, A.
    Ismail, M.
    Switala, A.
    Mahmoud, M.
    Soliman, A.
    Neyer, T.
    Palacio, A.
    Hadayer, A.
    El-Azab, M.
    Schaal, S.
    El-Baz, A.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 116 - 120
  • [4] Manual and automated segmentation of retinal layers in single transfoveal OCT scans of MS patients
    Albrecht, P.
    Ringelstein, M.
    Mueller, A. K.
    Keser, N.
    Harmel, J.
    Hartung, H. -P.
    Methner, A.
    Aktas, O.
    MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 260 - 261
  • [5] Automated Retinal and NFL Segmentation in OCT Volume Scans by Pixel Classification
    Vermeer, K. A.
    van der Schoot, J.
    De Boer, J. F.
    Lemij, H. G.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [6] Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes
    Pazos, Marta
    Anna Dyrda, Agnieszka
    Biarnes, Marc
    Gomez, Alicia
    Martin, Carlos
    Mora, Clara
    Fatti, Gianluca
    Anton, Alfonso
    OPHTHALMOLOGY, 2017, 124 (08) : 1218 - 1228
  • [7] Parallel Double Snakes. Application to the segmentation of retinal layers in 2D-OCT for pathological subjects
    Rossant, Florence
    Bloch, Isabelle
    Ghorbel, Itebeddine
    Paques, Michel
    PATTERN RECOGNITION, 2015, 48 (12) : 3857 - 3870
  • [8] Active contour method for ILM segmentation in ONH volume scans in retinal OCT
    Gawlik, Kay
    Hausser, Frank
    Paul, Friedemann
    Brandt, Alexander U.
    Kadas, Ella Maria
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12): : 6497 - 6518
  • [9] Colour Doppler Velocimetry of Central Retinal Artery in Glaucomatous and Normal Subjects
    Waraich, Harmeet Singh
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [10] Identifying patterns of glaucomatous progression in the circumpapillary retinal nerve fiber layer using OCT circle scans
    Grossman, Jennifer Leah
    Tsamis, Emmanouil
    La Bruna, Sol
    Liebmann, Jeffrey M.
    De Moraes, C. Gustavo
    Hood, Donald C.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)