Bayesian parameter inference for stochastic SIR epidemic model with hyperbolic diffusion

被引:5
|
作者
Qaffou, Abdelaziz [1 ]
El Maroufy, Hamid [1 ]
Kernane, Tewfik [2 ]
机构
[1] Fac Sci & Tech, Dept Appl Math, CP 523, Beni Mellal, Morocco
[2] Univ Sci & Technol USTHB, Fac Math, Algiers, Algeria
关键词
Diffusion process; Epidemic model; Hyperbolic distribution; MCMC simulation; Milstein Scheme; SIR model; POPULATIONS;
D O I
10.1080/03610918.2016.1217013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the Bayesian estimation parameters of the stochastic SIR (Susceptible-Infective-Removed) epidemic model from the trajectory data. Specifically, the data from the count of both infectives and susceptibles is assumed to be available on some time grid as the epidemic progresses. The diffusion approximation of the appropriate jump process is then used to estimate missing data between every pair of observation times. If the time step of imputations is small enough, we derive the posterior distributions of the infection and recovery rates using the Milstein scheme. The paper also presents Markov-chain Monte Carlo (MCMC) simulation that demonstrates that the method provides accurate estimates, as illustrated by the synthetic data from SIR epidemic model and the real data.
引用
收藏
页码:6907 / 6922
页数:16
相关论文
共 50 条
  • [1] Bayesian inference for nonlinear stochastic SIR epidemic model
    El Maroufy, Hamid
    Kernane, Tewfik
    Becheket, Sidali
    Ouddadj, Abdellah
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (11) : 2229 - 2240
  • [2] Towards uncertainty quantification and inference in the stochastic SIR epidemic model
    Capistran, Marcos A.
    Andres Christen, J.
    Velasco-Hernandez, Jorge X.
    [J]. MATHEMATICAL BIOSCIENCES, 2012, 240 (02) : 250 - 259
  • [3] Dynamics of a stochastic SIR epidemic model with distributed delay and degenerate diffusion
    Liu, Qun
    Jiang, Daqing
    Hayat, Tasawar
    Alsaedi, Ahmed
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7347 - 7370
  • [4] Parameter inference and model selection in deterministic and stochastic dynamical models via approximate Bayesian computation: modeling a wildlife epidemic
    Sun, Libo
    Lee, Chihoon
    Hoeting, Jennifer A.
    [J]. ENVIRONMETRICS, 2015, 26 (07) : 451 - 462
  • [5] Bayesian inference for a stochastic epidemic model with uncertain numbers of susceptibles of several types
    Hayakawa, Y
    O'Neill, PD
    Upton, D
    Yip, PSF
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (04) : 491 - 502
  • [6] Parameter estimation for stochastic SIR model
    Li, Shuang
    Xiong, Jie
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [7] Permanence and extinction for the stochastic SIR epidemic model
    Du, N. H.
    Nhu, N. N.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9619 - 9652
  • [8] Parameter inference for HIV stochastic diffusion model in closed heterosexual population
    Abou-Bakre, Abdellah
    El Maroufy, Hamid
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9081 - 9091
  • [9] Statistical Inference on a Stochastic Epidemic Model
    Fierro, Raul
    Leiva, Victor
    Balakrishnan, N.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (09) : 2297 - 2314
  • [10] The Behavior of an SIR Epidemic Model with Stochastic Perturbation
    Ji, Chunyan
    Jiang, Daqing
    Shi, Ningzhong
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (05) : 755 - 773