Towards uncertainty quantification and inference in the stochastic SIR epidemic model

被引:12
|
作者
Capistran, Marcos A. [1 ]
Andres Christen, J. [1 ]
Velasco-Hernandez, Jorge X. [2 ]
机构
[1] Ctr Invest Matemat AC, Guanajuato 36240, Gto, Mexico
[2] Inst Mexicano Petr, Programa Matemat Aplicadas & Computac, Mexico City 07730, DF, Mexico
基金
美国国家科学基金会;
关键词
Surrogate model; Bayesian inference; Chemical master equation; BAYESIAN-INFERENCE; REPRODUCTION NUMBER; MATHEMATICAL-THEORY; PARAMETER-ESTIMATION; DENGUE-FEVER; DYNAMICS; INFECTION; ACCOUNT; RATES; RISK;
D O I
10.1016/j.mbs.2012.08.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we address the problem of estimating the parameters of Markov jump processes modeling epidemics and introduce a novel method to conduct inference when data consists on partial observations in one of the state variables. We take the classical stochastic SIR model as a case study. Using the inverse-size expansion of van Kampen we obtain approximations for the first and second moments of the state variables. These approximate moments are in turn matched to the moments of an inputed Generic Discrete distribution aimed at generating an approximate likelihood that is valid both for low count or high count data. We conduct a full Bayesian inference using informative priors. Estimations and predictions are obtained both in a synthetic data scenario and in two Dengue fever case studies. (C) 2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:250 / 259
页数:10
相关论文
共 50 条
  • [1] Bayesian inference for nonlinear stochastic SIR epidemic model
    El Maroufy, Hamid
    Kernane, Tewfik
    Becheket, Sidali
    Ouddadj, Abdellah
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (11) : 2229 - 2240
  • [2] Bayesian parameter inference for stochastic SIR epidemic model with hyperbolic diffusion
    Qaffou, Abdelaziz
    El Maroufy, Hamid
    Kernane, Tewfik
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 6907 - 6922
  • [3] Uncertainty Quantification of Stochastic Epidemic SIR Models Using B-spline Polynomial Chaos
    Navjot Kaur
    Kavita Goyal
    Regular and Chaotic Dynamics, 2021, 26 : 22 - 38
  • [4] Uncertainty Quantification of Stochastic Epidemic SIR Models Using B-spline Polynomial Chaos
    Kaur, Navjot
    Goyal, Kavita
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (01): : 22 - 38
  • [5] Towards Improved Uncertainty Quantification of Stochastic Epidemic Models Using Sequential Monte Carlo
    Fadikar, Arindam
    Stevens, Abby
    Collier, Nicholson
    Ben Toh, Kok
    Morozova, Olga
    Hotton, Anna
    Clark, Jared
    Higdon, David
    Ozik, Jonathan
    2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, : 843 - 852
  • [6] Permanence and extinction for the stochastic SIR epidemic model
    Du, N. H.
    Nhu, N. N.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9619 - 9652
  • [7] Statistical Inference on a Stochastic Epidemic Model
    Fierro, Raul
    Leiva, Victor
    Balakrishnan, N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (09) : 2297 - 2314
  • [8] Dynamics Analysis of a Stochastic SIR Epidemic Model
    Rao, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] The Behavior of an SIR Epidemic Model with Stochastic Perturbation
    Ji, Chunyan
    Jiang, Daqing
    Shi, Ningzhong
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (05) : 755 - 773
  • [10] Multigroup SIR epidemic model with stochastic perturbation
    Ji, Chunyan
    Jiang, Daqing
    Shi, Ningzhong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (10) : 1747 - 1762